Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
In the present paper, we shall give an extension of the well known Pecaric-Rajic inequality in a quasi-Banach space, we establish the generalized inequality for an arbitrary number of finitely many nonzero elements of...In the present paper, we shall give an extension of the well known Pecaric-Rajic inequality in a quasi-Banach space, we establish the generalized inequality for an arbitrary number of finitely many nonzero elements of a quasi-Banach space, and obtain the corresponding upper and lower bounds. As a result, we get some more general inequalities.展开更多
We shall generalize the results of [9] about characterization of isomorphisms on quasi-Banach algebras by providing integral type conditions. Also, we shall give some new results in this way and finally, give a result...We shall generalize the results of [9] about characterization of isomorphisms on quasi-Banach algebras by providing integral type conditions. Also, we shall give some new results in this way and finally, give a result about hybrid fixed point of two homomorphisms on quasi-Banach algebras.展开更多
In this paper, we prove the generalized Hyers-Ulam stability of homomorphisms in quasi- Banach algebras associated with the following Pexiderized Jensen functional equation f(x+y/2+z)-g(x-y/2+z)=h(y).This is...In this paper, we prove the generalized Hyers-Ulam stability of homomorphisms in quasi- Banach algebras associated with the following Pexiderized Jensen functional equation f(x+y/2+z)-g(x-y/2+z)=h(y).This is applied to investigating homomorphisms between quasi-Banach algebras. The concept of the generalized Hyers-Ulam stability originated from Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, 297-300 (1978).展开更多
Let X be a ball quasi-Banach function space on R^(n).In this article,we introduce the weak Hardytype space WH_(X)(R^(n)),associated with X,via the radial maximal function.Assuming that the powered HardyLittlewood maxi...Let X be a ball quasi-Banach function space on R^(n).In this article,we introduce the weak Hardytype space WH_(X)(R^(n)),associated with X,via the radial maximal function.Assuming that the powered HardyLittlewood maximal operator satisfies some Fefferman-Stein vector-valued maximal inequality on X as well as it is bounded on both the weak ball quasi-Banach function space WX and the associated space,we then establish several real-variable characterizations of WH_(X)(R^(n)),respectively,in terms of various maximal functions,atoms and molecules.As an application,we obtain the boundedness of Calderón-Zygmund operators from the Hardy space H_(X)(R^(n))to WH_(X)(Rn),which includes the critical case.All these results are of wide applications.Particularly,when X:=M^(q)_(p)(R^(n))(the Morrey space),X:=L^(p)(R^(n))(the mixed-norm Lebesgue space)and X:=(EΦq)t(Rn)(the Orlicz-slice space),which are all ball quasi-Banach function spaces rather than quasiBanach function spaces,all these results are even new.Due to the generality,more applications of these results are predictable.展开更多
Let X be a ball quasi-Banach function space satisfying some mild additional assumptions and H x(R n)the associated Hardy-type space.In this article,we first establish the finite atomic characterization of H x(R n).As ...Let X be a ball quasi-Banach function space satisfying some mild additional assumptions and H x(R n)the associated Hardy-type space.In this article,we first establish the finite atomic characterization of H x(R n).As an application,we prove that the dual space of H x(Rn)is the Campanato space associated with X.For any given a∈(0,1]and s∈Z+,using the atomic and the Littlewood—Paley function characterizations of H x(Rn),we also establish its 5-order intrinsic square function characterizations,respectively,in terms of the intrinsic Lusin-area function S a,s,the intrinsic g-function g a,s,and the intrinsic g*λ-function g*λ,a,s,whereλcoincides with the best known range.展开更多
In this paper, we establish a general solution and the generalized Hyers-Ulam-Rassias stability of the following general mixed additive-cubic functional equation
Let(X,ρ,μ)be a space of homogeneous type in the sense of Coifman and Weiss,and Y(X)a ball quasi-Banach function space on X,which supports both a Fefferman–Stein vector-valued maximal inequality and the boundedness ...Let(X,ρ,μ)be a space of homogeneous type in the sense of Coifman and Weiss,and Y(X)a ball quasi-Banach function space on X,which supports both a Fefferman–Stein vector-valued maximal inequality and the boundedness of the powered Hardy–Littlewood maximal operator on its associate space.The authors first introduce the Hardy space H_(Y)(X)associated with Y(X),via the Lusin-area function,and then establish its various equivalent characterizations,respectively,in terms of atoms,molecules,and Littlewood–Paley g-functions and g_(λ)^(*)-functions.As an application,the authors obtain the boundedness of Calderón–Zygmund operators from H_(Y)(X)to Y(X),or to H_(Y)(X)via first establishing a boundedness criterion of linear operators on H_(Y)(X).All these results have a wide range of generality and,particularly,even when they are applied to variable Hardy spaces,the obtained results are also new.The major novelties of this article exist in that,to escape the reverse doubling condition ofμand the triangle inequality ofρ,the authors subtly use the wavelet reproducing formula,originally establish an admissible molecular characterization of H_(Y)(X),and fully apply the geometrical properties of X expressed by dyadic reference points or dyadic cubes.展开更多
We study the extension of isometries between the unit spheres of quasi-Banach spaces Lp for 0〈p〈1. We give some sufficient conditions such that an isometric mapping from the the unit sphere of Lp(μ) into that of ...We study the extension of isometries between the unit spheres of quasi-Banach spaces Lp for 0〈p〈1. We give some sufficient conditions such that an isometric mapping from the the unit sphere of Lp(μ) into that of another LP(ν) can be extended to be a linear isometry defined on the whole space.展开更多
We prove that the inner complex interpolation of two quasi-Banach lattices coincides with the closure of their intersection in their Calderon product. This generalizes a classical result by V. A. Shestakov in 1974 for...We prove that the inner complex interpolation of two quasi-Banach lattices coincides with the closure of their intersection in their Calderon product. This generalizes a classical result by V. A. Shestakov in 1974 for Banach lattices.展开更多
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
文摘In the present paper, we shall give an extension of the well known Pecaric-Rajic inequality in a quasi-Banach space, we establish the generalized inequality for an arbitrary number of finitely many nonzero elements of a quasi-Banach space, and obtain the corresponding upper and lower bounds. As a result, we get some more general inequalities.
文摘We shall generalize the results of [9] about characterization of isomorphisms on quasi-Banach algebras by providing integral type conditions. Also, we shall give some new results in this way and finally, give a result about hybrid fixed point of two homomorphisms on quasi-Banach algebras.
文摘In this paper, we prove the generalized Hyers-Ulam stability of homomorphisms in quasi- Banach algebras associated with the following Pexiderized Jensen functional equation f(x+y/2+z)-g(x-y/2+z)=h(y).This is applied to investigating homomorphisms between quasi-Banach algebras. The concept of the generalized Hyers-Ulam stability originated from Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, 297-300 (1978).
基金supported by National Natural Science Foundation of China(Grant Nos.11971058,11761131002,11671185 and 11871100)。
文摘Let X be a ball quasi-Banach function space on R^(n).In this article,we introduce the weak Hardytype space WH_(X)(R^(n)),associated with X,via the radial maximal function.Assuming that the powered HardyLittlewood maximal operator satisfies some Fefferman-Stein vector-valued maximal inequality on X as well as it is bounded on both the weak ball quasi-Banach function space WX and the associated space,we then establish several real-variable characterizations of WH_(X)(R^(n)),respectively,in terms of various maximal functions,atoms and molecules.As an application,we obtain the boundedness of Calderón-Zygmund operators from the Hardy space H_(X)(R^(n))to WH_(X)(Rn),which includes the critical case.All these results are of wide applications.Particularly,when X:=M^(q)_(p)(R^(n))(the Morrey space),X:=L^(p)(R^(n))(the mixed-norm Lebesgue space)and X:=(EΦq)t(Rn)(the Orlicz-slice space),which are all ball quasi-Banach function spaces rather than quasiBanach function spaces,all these results are even new.Due to the generality,more applications of these results are predictable.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11971058,11761131002,11671185,11871100).
文摘Let X be a ball quasi-Banach function space satisfying some mild additional assumptions and H x(R n)the associated Hardy-type space.In this article,we first establish the finite atomic characterization of H x(R n).As an application,we prove that the dual space of H x(Rn)is the Campanato space associated with X.For any given a∈(0,1]and s∈Z+,using the atomic and the Littlewood—Paley function characterizations of H x(Rn),we also establish its 5-order intrinsic square function characterizations,respectively,in terms of the intrinsic Lusin-area function S a,s,the intrinsic g-function g a,s,and the intrinsic g*λ-function g*λ,a,s,whereλcoincides with the best known range.
基金supported by National Natural Science Foundation of China (Grant Nos. 10671013 and11171022)
文摘In this paper, we establish a general solution and the generalized Hyers-Ulam-Rassias stability of the following general mixed additive-cubic functional equation
基金Supported by the National Key Research and Development Program of China(Grant No.2020YFA0712900)the National Natural Science Foundation of China(Grant Nos.11971058,12071197 and 11871100)the Fundamental Research Funds for the Central Universities(Grant Nos.500421359 and 500421126)。
文摘Let(X,ρ,μ)be a space of homogeneous type in the sense of Coifman and Weiss,and Y(X)a ball quasi-Banach function space on X,which supports both a Fefferman–Stein vector-valued maximal inequality and the boundedness of the powered Hardy–Littlewood maximal operator on its associate space.The authors first introduce the Hardy space H_(Y)(X)associated with Y(X),via the Lusin-area function,and then establish its various equivalent characterizations,respectively,in terms of atoms,molecules,and Littlewood–Paley g-functions and g_(λ)^(*)-functions.As an application,the authors obtain the boundedness of Calderón–Zygmund operators from H_(Y)(X)to Y(X),or to H_(Y)(X)via first establishing a boundedness criterion of linear operators on H_(Y)(X).All these results have a wide range of generality and,particularly,even when they are applied to variable Hardy spaces,the obtained results are also new.The major novelties of this article exist in that,to escape the reverse doubling condition ofμand the triangle inequality ofρ,the authors subtly use the wavelet reproducing formula,originally establish an admissible molecular characterization of H_(Y)(X),and fully apply the geometrical properties of X expressed by dyadic reference points or dyadic cubes.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10871101, 10926121)Research Fund for the Doctoral Program of Higher Education (Grant No. 20060055010)
文摘We study the extension of isometries between the unit spheres of quasi-Banach spaces Lp for 0〈p〈1. We give some sufficient conditions such that an isometric mapping from the the unit sphere of Lp(μ) into that of another LP(ν) can be extended to be a linear isometry defined on the whole space.
文摘We prove that the inner complex interpolation of two quasi-Banach lattices coincides with the closure of their intersection in their Calderon product. This generalizes a classical result by V. A. Shestakov in 1974 for Banach lattices.
基金National Natural Science Foundation of the People’s Republic of China“Research on derivatives and operators in noncommutative symmetric spaces”(12261084).