The effect of Pr substitution for Dy on the magnetic and magnetostrictive properties, anisotropy, spin reorientation and Mssbauer effect of a series of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 (x=0,0.1,0.20,0.25,0.30,0.35) all...The effect of Pr substitution for Dy on the magnetic and magnetostrictive properties, anisotropy, spin reorientation and Mssbauer effect of a series of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 (x=0,0.1,0.20,0.25,0.30,0.35) alloys at room temperature have been investigated. It was found that a small amount of Pr substitution is beneficial to a decrease in the magnetocrystalline anisotropy for the Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. The magnetostriction decreases drastically with increasing x and the magnetostrictive effect disappears for x>0.2. However, the magnetostriction exhibits a slightly bigger value at x=0.1 than the free alloys and is saturated more easily with the magnetic field H. The saturation magnetization and Curie temperature decrease monotonously, but the spontaneous magnetostriction increases linearly with increasing x, whereas the spin reorientation temperature increases first, then decreases rapidly and reaches the maximum at x=0.1. The analysis of Mssbauer spectra indicated that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry with the Pr concentration x, namely spin reorientation. Compared with Al substitution for Fe, the effect of Pr substitution for Dy on spin reorientation is relatively small. The hyperfine field increases with Pr concentration increasing, and the isomer shifts and the quadrupole splitting (QS) show weak concentration dependence.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 60373093, 60533060,10726068, 10801024)the Innovation Foundation of Key Laboratory of High Temperature Gasdynamics of Chinese Academy of Sciences, China
文摘The effect of Pr substitution for Dy on the magnetic and magnetostrictive properties, anisotropy, spin reorientation and Mssbauer effect of a series of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 (x=0,0.1,0.20,0.25,0.30,0.35) alloys at room temperature have been investigated. It was found that a small amount of Pr substitution is beneficial to a decrease in the magnetocrystalline anisotropy for the Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. The magnetostriction decreases drastically with increasing x and the magnetostrictive effect disappears for x>0.2. However, the magnetostriction exhibits a slightly bigger value at x=0.1 than the free alloys and is saturated more easily with the magnetic field H. The saturation magnetization and Curie temperature decrease monotonously, but the spontaneous magnetostriction increases linearly with increasing x, whereas the spin reorientation temperature increases first, then decreases rapidly and reaches the maximum at x=0.1. The analysis of Mssbauer spectra indicated that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry with the Pr concentration x, namely spin reorientation. Compared with Al substitution for Fe, the effect of Pr substitution for Dy on spin reorientation is relatively small. The hyperfine field increases with Pr concentration increasing, and the isomer shifts and the quadrupole splitting (QS) show weak concentration dependence.