The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st...The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life.展开更多
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan...Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.展开更多
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An...Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ...To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.展开更多
A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic s...A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic sensor that can continuously detect two kinds of parameters was achieved.By controlling the temperature from high to low,the function of fiber sulfide sensor and fiber DCP sensor can be realized,so as to realize the continuous detection of dual-parameter.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions,the response curves,linear detection ranges,detection limits and response times of the dual-parameter sensor for testing sulfide and DCP were obtained,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing sulfide and DCP concentration of practical water samples.展开更多
Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers an...Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range.展开更多
A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichl...A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.展开更多
The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed ...The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.展开更多
Ammonia sensors have broad spectrum of applications for industrial process control as well as for environ-mental monitoring. An optical fiber ammonia sensor probe has been developed by using a bent optical fiber havin...Ammonia sensors have broad spectrum of applications for industrial process control as well as for environ-mental monitoring. An optical fiber ammonia sensor probe has been developed by using a bent optical fiber having dual poly(methyl methacrylate) (PMMA)/chlorophenol red (CPR) coatings as a transducer. This sen-sor probe was tested for monitoring trace ammonia in gas samples using air as sample matrix. The reaction of ammonia with CPR causes a color change of the reagent, which was detected by using fiber optic evanes-cent wave absorption spectrometry as a sensing signal. By adopting a dual layer coating structure, the sensor probe has faster response compared to a sensor using a broadly accepted sensing reagent-immobilized poly-mer coating structure. The sensor developed in this work is sensitive, has a detection limit of 2.7 ppb NH3 in air, which is the most sensitive among the reported optical fiber ammonia sensors to the best knowledge of the authors. The sensor is also reversible and has a response time of 25 minutes. The features of high sensi-tivity, reversibility and reasonable response time make this sensor technique very attractive for air quality monitoring.展开更多
A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be use...A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.展开更多
Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation ne...Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation neural network(BPNN)algorithm,are proposed to identify the loading positions individually.The feasibility of the suggested methods is evaluated through an experimental program on a carbon fiber reinforced plastic laminate.The experimental tests involve in application of four optical fiber-based sensors for strain measurement at discrete points.The sensors are specially designed fiber Bragg grating(FBG)in small diameter.The small-diameter FBG sensors are arrayed in 2-D on the laminate surface.The testing results indicate that the loading position could be detected by the proposed method.Using SVM method,the 2-D FBG sensors can approximate the loading location with maximum error less than 14 mm.However,the maximum localization error could be limited to about 1 mm by applying the BPNN algorithm.It is mainly because the convergence conditions(mean square error)can be set in advance,while SVM cannot.展开更多
Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveban...Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology isused to carry out harmonic wave detecting the concentration of methane. The sensitivity can arriveat 10^(-5). Experiments results show that the performance targets of the sensor such as sensitivitycan basically satisfy the requests of methane detection.展开更多
A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installe...A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.展开更多
The temperature dependence of the bending loss light energy in multimode optical fibers is reported and analyzed. The work described in this paper aims to extend an initial previous analysis concerning planar optical ...The temperature dependence of the bending loss light energy in multimode optical fibers is reported and analyzed. The work described in this paper aims to extend an initial previous analysis concerning planar optical waveguides, light energy loss, to circular optical waveguides. The paper also presents à novel intrinsic fiber optic sensing device base on this study allowing to measure temperatures parameters. The simulation results are validated theoretically in the case of silica/silicone optical fiber. A comparison is done between results obtained with an optical fiber and the results obtained from the previous curved optical planar waveguide study. It is showed that the bending losses and the temperature measurement range depend on the curvature radius of an optical fiber or waveguide and the kind of the optical waveguide on which the sensing process is implemented.展开更多
A temperature sensor is demonstrated and fabricated by coating the single-mode tapered optical fiber with temperature-sensitive silicone rubber. It works on the change of the evanescent fields in the tapered optical f...A temperature sensor is demonstrated and fabricated by coating the single-mode tapered optical fiber with temperature-sensitive silicone rubber. It works on the change of the evanescent fields in the tapered optical fiber. Small changes in the refractive index of coating film greatly influence the power of evanescent fields, which modulate the transmission optical power in the waist region. The range of temperature measured is from -20℃ to 70 ℃. The results show that the temperature sensor has high temperature sensitivity (0.012 mW/℃) and good repeatability.展开更多
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p...The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.展开更多
In this paper we propose an analyzing of the response of a stress optical fiber sensor of which we proposed several design. We show that an optical fiber sensor with these designs can covenanting allow the measuring t...In this paper we propose an analyzing of the response of a stress optical fiber sensor of which we proposed several design. We show that an optical fiber sensor with these designs can covenanting allow the measuring the force/stress applied to a mechanical structure or which it is linked, by optimizing the uses of appropriate materials for constituting the sensor support. The experiment that we introduce to validate our approach based in principles includes design with a support bearing a multimode optical fiber organized in such a way that the transmitted light is attenuated when the fiber-bending angle coming from stitching in holes of the support is modified by the effects of the force/stress applied to the optical fiber sensor realized in this way. The tests realized concern the most relevant parameters that define the performances of the stress sensor that we propose. We present the problems that we to solved for the optimization of the sensor for selecting the more efficient material for the optical fiber sensor support related to a relevant choice of optical fibers.展开更多
A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with...A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with low noise ,low drift operational amplifiers,6-pole Butterworth filters and perfect digital signal processing circuits.展开更多
A stable dark variant separated from photobacterium phosphoreum (A2) was fixed in agar-gel membrane and immobilized onto an exposed end of a fiber-optic linked with bioluminometer. The variant could emit a luminescent...A stable dark variant separated from photobacterium phosphoreum (A2) was fixed in agar-gel membrane and immobilized onto an exposed end of a fiber-optic linked with bioluminometer. The variant could emit a luminescent signal in the presence of genotoxic agents, such as Mitomycin C (MC). The performance of this whole-cell optical fiber sensor system was examined as a function of several parameters, including gel probe thickness, bacterial cell density, and diameter of the fiber-optic core and working temperature. An optimal response to a model genotoxicant, Mitomycin C, was achieved with agar-bacterial gel membrane: the thickness of gel membrane was about 5 mm; the cell density of bacteria in gel membrane was about 2.0×107 /ml; the diameter of fiber-optic core was 5.0 mm; the working temperature was 25 ℃. Under these optimized conditions, the response time was less than 10 h to Mitomycin C, with a lower detection threshold of 0.1 mg/L.展开更多
基金the National Natural Science Foundation of China(No.52307245[Y.D.Li],No.U21A20170[X.He],22279070[L.Wang],and 52206263[Y.Song])the China Postdoctoral Science Foundation(No.2022M721820[Y.D.Li])the Ministry of Science and Technology of China(No.2019YFA0705703[L.Wang])。
文摘The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life.
基金supported by the National Natural Science Foundation of China(No.12072056)the National Key Research and Development Program of China(No.2018YFA0702800)+1 种基金the Jiangsu-Czech Bilateral Co-Funding R&D Project(No.BZ2023011)the Fundamental Research Funds for the Central Universities(No.B220204002).
文摘Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.
文摘Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
基金supported by the National Natural Science Foundation of China (Grant No. 61705025)the Natural Science Foundation of Chongqing (Grant Nos. cstc2019jcyjmsxm X043 and cstc2018jcyj AX0817)+2 种基金the Fund from the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant Nos. KJQN201801217, KJQN202001214, KJQN201901226, and KJ1710247)the Fund from Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area (Grant Nos. ZD2020A0103 and ZD2020A0102)the Fundamental Research Funds for Chongqing Three Gorges University of China (Grant No. 19ZDPY08)。
文摘To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.
基金Funded by the Natural Science Foundation of Hubei Province(No.2022CFB861)the Wenhua College Research and Innovation Team(No.2022T01)。
文摘A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic sensor that can continuously detect two kinds of parameters was achieved.By controlling the temperature from high to low,the function of fiber sulfide sensor and fiber DCP sensor can be realized,so as to realize the continuous detection of dual-parameter.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions,the response curves,linear detection ranges,detection limits and response times of the dual-parameter sensor for testing sulfide and DCP were obtained,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing sulfide and DCP concentration of practical water samples.
文摘Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range.
基金Funded by the National Natural Science Foundation of China(No.61205062)the Scientific Research Foundation for Doctor of University(No.2019Y02)。
文摘A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.
基金Supported by the National Natural Science Foundation ofChina (60537050)
文摘The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.
文摘Ammonia sensors have broad spectrum of applications for industrial process control as well as for environ-mental monitoring. An optical fiber ammonia sensor probe has been developed by using a bent optical fiber having dual poly(methyl methacrylate) (PMMA)/chlorophenol red (CPR) coatings as a transducer. This sen-sor probe was tested for monitoring trace ammonia in gas samples using air as sample matrix. The reaction of ammonia with CPR causes a color change of the reagent, which was detected by using fiber optic evanes-cent wave absorption spectrometry as a sensing signal. By adopting a dual layer coating structure, the sensor probe has faster response compared to a sensor using a broadly accepted sensing reagent-immobilized poly-mer coating structure. The sensor developed in this work is sensitive, has a detection limit of 2.7 ppb NH3 in air, which is the most sensitive among the reported optical fiber ammonia sensors to the best knowledge of the authors. The sensor is also reversible and has a response time of 25 minutes. The features of high sensi-tivity, reversibility and reasonable response time make this sensor technique very attractive for air quality monitoring.
基金the Fundamental Research Foundation of Harbin Engineering University, (grant number HEUF 04017)
文摘A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.
基金supported by the National Natural Science Foundation of China(Nos.11402112,51405223)
文摘Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation neural network(BPNN)algorithm,are proposed to identify the loading positions individually.The feasibility of the suggested methods is evaluated through an experimental program on a carbon fiber reinforced plastic laminate.The experimental tests involve in application of four optical fiber-based sensors for strain measurement at discrete points.The sensors are specially designed fiber Bragg grating(FBG)in small diameter.The small-diameter FBG sensors are arrayed in 2-D on the laminate surface.The testing results indicate that the loading position could be detected by the proposed method.Using SVM method,the 2-D FBG sensors can approximate the loading location with maximum error less than 14 mm.However,the maximum localization error could be limited to about 1 mm by applying the BPNN algorithm.It is mainly because the convergence conditions(mean square error)can be set in advance,while SVM cannot.
文摘Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology isused to carry out harmonic wave detecting the concentration of methane. The sensitivity can arriveat 10^(-5). Experiments results show that the performance targets of the sensor such as sensitivitycan basically satisfy the requests of methane detection.
基金This project is supported by R&D Foundation of National Petroleum Corporation (CNPC) of China(No.2001411-4).
文摘A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.
文摘The temperature dependence of the bending loss light energy in multimode optical fibers is reported and analyzed. The work described in this paper aims to extend an initial previous analysis concerning planar optical waveguides, light energy loss, to circular optical waveguides. The paper also presents à novel intrinsic fiber optic sensing device base on this study allowing to measure temperatures parameters. The simulation results are validated theoretically in the case of silica/silicone optical fiber. A comparison is done between results obtained with an optical fiber and the results obtained from the previous curved optical planar waveguide study. It is showed that the bending losses and the temperature measurement range depend on the curvature radius of an optical fiber or waveguide and the kind of the optical waveguide on which the sensing process is implemented.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Universities Foster Innovation Foundation Projects for Major Projects in Ministry of Education (Grant No.708041)
文摘A temperature sensor is demonstrated and fabricated by coating the single-mode tapered optical fiber with temperature-sensitive silicone rubber. It works on the change of the evanescent fields in the tapered optical fiber. Small changes in the refractive index of coating film greatly influence the power of evanescent fields, which modulate the transmission optical power in the waist region. The range of temperature measured is from -20℃ to 70 ℃. The results show that the temperature sensor has high temperature sensitivity (0.012 mW/℃) and good repeatability.
基金jointly supported by the Science and Technology Program of Guangzhou (202103040003)the offshore NGHs production test projects under the Marine Geological Survey Program initiated by the China Geological Survey (DD20190226, DD20190218 and DD20221706)+2 种基金the Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020] 045)the financial support from China Geological Survey (DD20221703)the National Natural Science Foundation of China (NSFC) (6210030553)。
文摘The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.
文摘In this paper we propose an analyzing of the response of a stress optical fiber sensor of which we proposed several design. We show that an optical fiber sensor with these designs can covenanting allow the measuring the force/stress applied to a mechanical structure or which it is linked, by optimizing the uses of appropriate materials for constituting the sensor support. The experiment that we introduce to validate our approach based in principles includes design with a support bearing a multimode optical fiber organized in such a way that the transmitted light is attenuated when the fiber-bending angle coming from stitching in holes of the support is modified by the effects of the force/stress applied to the optical fiber sensor realized in this way. The tests realized concern the most relevant parameters that define the performances of the stress sensor that we propose. We present the problems that we to solved for the optimization of the sensor for selecting the more efficient material for the optical fiber sensor support related to a relevant choice of optical fibers.
文摘A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with low noise ,low drift operational amplifiers,6-pole Butterworth filters and perfect digital signal processing circuits.
文摘A stable dark variant separated from photobacterium phosphoreum (A2) was fixed in agar-gel membrane and immobilized onto an exposed end of a fiber-optic linked with bioluminometer. The variant could emit a luminescent signal in the presence of genotoxic agents, such as Mitomycin C (MC). The performance of this whole-cell optical fiber sensor system was examined as a function of several parameters, including gel probe thickness, bacterial cell density, and diameter of the fiber-optic core and working temperature. An optimal response to a model genotoxicant, Mitomycin C, was achieved with agar-bacterial gel membrane: the thickness of gel membrane was about 5 mm; the cell density of bacteria in gel membrane was about 2.0×107 /ml; the diameter of fiber-optic core was 5.0 mm; the working temperature was 25 ℃. Under these optimized conditions, the response time was less than 10 h to Mitomycin C, with a lower detection threshold of 0.1 mg/L.