The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also inclu...The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also included to explain the effectiveness of the proposed methods. The results of this paper are interesting extensions of those known results.展开更多
The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong c...The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong convergence theorems under certain conditions. We utilize the theorems to study a modified Halpern-type iterative algorithm for a system of equilibrium problems. The results improve and extend the corresponding results of Chang et al. (Applied Mathematics and Computation, 218, 6489-6497).展开更多
Some convergences of topology are discussed. The definitions of almost uniform convergence topology and compatible topology are given. It is shown that the quasiuniform convergence and generalized uniform convergence ...Some convergences of topology are discussed. The definitions of almost uniform convergence topology and compatible topology are given. It is shown that the quasiuniform convergence and generalized uniform convergence have no compatible topology,but the almost uniform convergence has compatible topology. Moreover, the description of all uniform convergence limits and their mutual relation are investigated[1].展开更多
In this paper, we introduce an iterative process for two nonself I-asymptotically quasi-nonexpansive mappings and two finite families of such mappings in Banach spaces, and prove some strong convergence theorems for s...In this paper, we introduce an iterative process for two nonself I-asymptotically quasi-nonexpansive mappings and two finite families of such mappings in Banach spaces, and prove some strong convergence theorems for such mappings. Our results extend some existing results.展开更多
We introduce a general iterative method for a finite family of generalized asymptotically quasi- nonexpansive mappings in a hyperbolic space and study its strong convergence. The new iterative method includes multi-st...We introduce a general iterative method for a finite family of generalized asymptotically quasi- nonexpansive mappings in a hyperbolic space and study its strong convergence. The new iterative method includes multi-step iterative method of Khan et al. [1] as a special case. Our results are new in hyperbolic spaces and generalize many known results in Banach spaces and CAT(0) spaces, simultaneously.展开更多
In this work we try to give a new contraction type in multi-valued mapping on complete metric spaces. We prove the existence of fixed point for (<i>r</i>,<i>φ</i>,<i>ψ</i>)-Suzuki...In this work we try to give a new contraction type in multi-valued mapping on complete metric spaces. We prove the existence of fixed point for (<i>r</i>,<i>φ</i>,<i>ψ</i>)-Suzuki contraction in such spaces. Around our paper, the function <i>ψ</i> is absolutely continuous, and in this case, the contraction proposed by as has a fixed point.展开更多
We establish some results on coincidence and common fixed points for a twopair of multi-valued and single-valued maps in complete metric spaces. Presented theorems generalize recent results of Gordji et al [4] and sev...We establish some results on coincidence and common fixed points for a twopair of multi-valued and single-valued maps in complete metric spaces. Presented theorems generalize recent results of Gordji et al [4] and several results existing in the literature.展开更多
In this paper, relaxed iterative algorithms of Krasnoselskii-type and Halpern-type that approximate a solution of a system of a generalized mixed equilibrium problem anda common fixed point of a countable family of to...In this paper, relaxed iterative algorithms of Krasnoselskii-type and Halpern-type that approximate a solution of a system of a generalized mixed equilibrium problem anda common fixed point of a countable family of totally quasi-C-asymptotically nonexpansivemulti-valued maps are constructed. Strong convergence of the sequence generated by thesealgorithms is proved in uniformly smooth and strictly convex real Banach spaces with Kadec-Klee property. Furthermore, several applications of our theorems are also presented. Finally,our theorems are significant improvements on several important recent results for this classof nonlinear problems.展开更多
In recent times the fixed point results in partially ordered metric spaces has greatly developed. In this paper we prove common fixed point results for multivalued and singlevalued mappings in partially ordered metric...In recent times the fixed point results in partially ordered metric spaces has greatly developed. In this paper we prove common fixed point results for multivalued and singlevalued mappings in partially ordered metric space. Our theorems generalized the theorem in [1] and extends the many more recent results in such spaces.展开更多
In this paper,we study a modified implicit rule for finding a solution of split common fixed point problem of a Bregman quasi-nonexpansive mapping in Banach spaces.We propose a new iterative algorithm and prove the st...In this paper,we study a modified implicit rule for finding a solution of split common fixed point problem of a Bregman quasi-nonexpansive mapping in Banach spaces.We propose a new iterative algorithm and prove the strong convergence theorem under appropriate conditions.As an application,the results are applied to solving the zero problem and the equilibrium problem.展开更多
Let I be a compact interval of real axis R, and (L, H) be the metric space of all nonempty closed subintervals of I with the Hausdorff metric H and f : I →L be a continuous multi-valued map. Assume that Pn = (x0,...Let I be a compact interval of real axis R, and (L, H) be the metric space of all nonempty closed subintervals of I with the Hausdorff metric H and f : I →L be a continuous multi-valued map. Assume that Pn = (x0, x1,..., xn) is a return trajectory of f and that p ∈ [min Pn, max Pn] with p ∈ f(p). In this paper, we show that if there exist k (≥ 1) centripetal point pairs of f (relative to p) in {(xi;xi+l) : 0 ≤ i ≤ n- 1} and n =sk+r (0 ≤ r ≤ k - 1), then f has an R-periodic orbit, where R=s+1 ifsiseven, and R =s if s is odd and r = 0, and R=s+2 if s is odd and r 〉0. Besides, we also study stability of periodic orbits of continuous multi-valued maps from I to L.展开更多
Let C be a nonempty closed convex subset of a real Banach space E. Let S : C→ C be a quasi-nonexpansive mapping, let T : C→C be an asymptotically demicontractive and uniformly Lipschitzian mapping, and let F := ...Let C be a nonempty closed convex subset of a real Banach space E. Let S : C→ C be a quasi-nonexpansive mapping, let T : C→C be an asymptotically demicontractive and uniformly Lipschitzian mapping, and let F := {x ∈C : Sx = x and Tx = x}≠Ф Let {xn}n≥0 be the sequence generated irom an arbitrary x0∈Cby xn+i=(1-cn)Sxn+cnT^nxn, n≥0.We prove the necessary and sufficient conditions for the strong convergence of the iterative sequence {xn} to an element of F. These extend and improve the recent results of Moore and Nnoli.展开更多
The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly mono...The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in Korpelevich(Ekonomika i Matematicheskie Metody,1976,12(4):747-756),but also extend and replenish the corresponding results obtained by Iiduka and Takahashi(Nonlinear Anal TMA,2005,61(3):341-350),Takahashi and Toyoda(J Optim Theory Appl,2003, 118(2):417-428),Nadezhkina and Takahashi(J Optim Theory Appl,2006,128(1):191- 201),and Zeng and Yao(Taiwan Residents Journal of Mathematics,2006,10(5):1293-1303).展开更多
With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is d...With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations for the (2+1)-dimensional NNV system.展开更多
In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-c...In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds.展开更多
The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating ...The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.展开更多
An hierarchical circularly iterative method is introduced for solving a system of variational circularly inequalities with set of fixed points of strongly quasi-nonexpansive mapping problems in this paper. Under some ...An hierarchical circularly iterative method is introduced for solving a system of variational circularly inequalities with set of fixed points of strongly quasi-nonexpansive mapping problems in this paper. Under some suitable conditions, strong convergence results for the hierarchical circularly iterative sequence are proved in the setting of Hilbert spaces. Our scheme can be regarded as a more general variant of the algorithm proposed by Maingé.展开更多
In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. ...In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. Two results under weaker conditions are presented. The methods rely on a fixed point theorem for contraction multi-valued maps due to Covitz and Nadler and Schaefer's fixed point theorem combined with lower semi-continuous multi-valued operators with decomposable values.展开更多
In this paper,we investigate a new inertial viscosity extragradient algorithm for solving variational inequality problems for pseudo-monotone and Lipschitz continuous operator and fixed point problems for quasi-nonexp...In this paper,we investigate a new inertial viscosity extragradient algorithm for solving variational inequality problems for pseudo-monotone and Lipschitz continuous operator and fixed point problems for quasi-nonexpansive mappings in real Hilbert spaces.Strong convergence theorems are obtained under some appropriate conditions on the parameters.Finally,we give some numerical experiments to show the advantages of our proposed algorithms.The results obtained in this paper extend and improve some recent works in the literature.展开更多
基金The NSF(11071053)of ChinaNatural Science Basic Research Plan(2014JM2-1003)in Shaanxi Province of ChinaScientific Research Project(YD2016-12)of Yan’an University
文摘The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also included to explain the effectiveness of the proposed methods. The results of this paper are interesting extensions of those known results.
文摘The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong convergence theorems under certain conditions. We utilize the theorems to study a modified Halpern-type iterative algorithm for a system of equilibrium problems. The results improve and extend the corresponding results of Chang et al. (Applied Mathematics and Computation, 218, 6489-6497).
文摘Some convergences of topology are discussed. The definitions of almost uniform convergence topology and compatible topology are given. It is shown that the quasiuniform convergence and generalized uniform convergence have no compatible topology,but the almost uniform convergence has compatible topology. Moreover, the description of all uniform convergence limits and their mutual relation are investigated[1].
基金supported by the National Natural Science Foundation of China (11271105, 11071169)the Natural Science Foundation of Zhejiang Province (LY12A01030)
文摘In this paper, we introduce an iterative process for two nonself I-asymptotically quasi-nonexpansive mappings and two finite families of such mappings in Banach spaces, and prove some strong convergence theorems for such mappings. Our results extend some existing results.
文摘We introduce a general iterative method for a finite family of generalized asymptotically quasi- nonexpansive mappings in a hyperbolic space and study its strong convergence. The new iterative method includes multi-step iterative method of Khan et al. [1] as a special case. Our results are new in hyperbolic spaces and generalize many known results in Banach spaces and CAT(0) spaces, simultaneously.
文摘In this work we try to give a new contraction type in multi-valued mapping on complete metric spaces. We prove the existence of fixed point for (<i>r</i>,<i>φ</i>,<i>ψ</i>)-Suzuki contraction in such spaces. Around our paper, the function <i>ψ</i> is absolutely continuous, and in this case, the contraction proposed by as has a fixed point.
基金supported by Grant No.174025 of the Ministry of Science,Technology and Development,Republic of Serbiasupported by Universita` degli Studi di Palermo,Local project R.S.ex 60%
文摘We establish some results on coincidence and common fixed points for a twopair of multi-valued and single-valued maps in complete metric spaces. Presented theorems generalize recent results of Gordji et al [4] and several results existing in the literature.
文摘In this paper, relaxed iterative algorithms of Krasnoselskii-type and Halpern-type that approximate a solution of a system of a generalized mixed equilibrium problem anda common fixed point of a countable family of totally quasi-C-asymptotically nonexpansivemulti-valued maps are constructed. Strong convergence of the sequence generated by thesealgorithms is proved in uniformly smooth and strictly convex real Banach spaces with Kadec-Klee property. Furthermore, several applications of our theorems are also presented. Finally,our theorems are significant improvements on several important recent results for this classof nonlinear problems.
文摘In recent times the fixed point results in partially ordered metric spaces has greatly developed. In this paper we prove common fixed point results for multivalued and singlevalued mappings in partially ordered metric space. Our theorems generalized the theorem in [1] and extends the many more recent results in such spaces.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12171435)the Natural Science Foundation of Zhejiang Province(Grant No.LY14A010011).
文摘In this paper,we study a modified implicit rule for finding a solution of split common fixed point problem of a Bregman quasi-nonexpansive mapping in Banach spaces.We propose a new iterative algorithm and prove the strong convergence theorem under appropriate conditions.As an application,the results are applied to solving the zero problem and the equilibrium problem.
基金Supported by NNSF of China(Grant No.11761011)NSF of Guangxi(Grant Nos.2016GXNSFBA380235and 2016GXNSFAA380286)+1 种基金YMTBAPP of Guangxi Colleges(Grant No.2017KY0598)SF of Guangxi Univresity of Finance and Economics(Grant No.2017QNA04)
文摘Let I be a compact interval of real axis R, and (L, H) be the metric space of all nonempty closed subintervals of I with the Hausdorff metric H and f : I →L be a continuous multi-valued map. Assume that Pn = (x0, x1,..., xn) is a return trajectory of f and that p ∈ [min Pn, max Pn] with p ∈ f(p). In this paper, we show that if there exist k (≥ 1) centripetal point pairs of f (relative to p) in {(xi;xi+l) : 0 ≤ i ≤ n- 1} and n =sk+r (0 ≤ r ≤ k - 1), then f has an R-periodic orbit, where R=s+1 ifsiseven, and R =s if s is odd and r = 0, and R=s+2 if s is odd and r 〉0. Besides, we also study stability of periodic orbits of continuous multi-valued maps from I to L.
基金the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE,Chinathe Dawn Program Foundation in Shanghai and partially supported by grant from the National Science Council of Taiwan
文摘Let C be a nonempty closed convex subset of a real Banach space E. Let S : C→ C be a quasi-nonexpansive mapping, let T : C→C be an asymptotically demicontractive and uniformly Lipschitzian mapping, and let F := {x ∈C : Sx = x and Tx = x}≠Ф Let {xn}n≥0 be the sequence generated irom an arbitrary x0∈Cby xn+i=(1-cn)Sxn+cnT^nxn, n≥0.We prove the necessary and sufficient conditions for the strong convergence of the iterative sequence {xn} to an element of F. These extend and improve the recent results of Moore and Nnoli.
基金the Natural Science Foundation of Yibin University of China(No.2007-Z003)
文摘The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in Korpelevich(Ekonomika i Matematicheskie Metody,1976,12(4):747-756),but also extend and replenish the corresponding results obtained by Iiduka and Takahashi(Nonlinear Anal TMA,2005,61(3):341-350),Takahashi and Toyoda(J Optim Theory Appl,2003, 118(2):417-428),Nadezhkina and Takahashi(J Optim Theory Appl,2006,128(1):191- 201),and Zeng and Yao(Taiwan Residents Journal of Mathematics,2006,10(5):1293-1303).
基金supported by the Natural Science Foundation of Zhejiang Province under Grant No.Y604106the Scientific Research Foundation of Zhejiang Provincial Education Department under Grant No.20070568the Natural Science Foundation of Zhejiang Lishui University under Grant No.KZ08001
文摘With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations for the (2+1)-dimensional NNV system.
基金This study was supported by the Natural Science Foundation of China Medical University,TaiwanThis work was also supported by Scientific Research Fund of SiChuan Provincial Education Department(14ZA0272).
文摘In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds.
基金supported by the Natural Science Foundation of Yibin University (No.2009-Z003)
文摘The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.
文摘An hierarchical circularly iterative method is introduced for solving a system of variational circularly inequalities with set of fixed points of strongly quasi-nonexpansive mapping problems in this paper. Under some suitable conditions, strong convergence results for the hierarchical circularly iterative sequence are proved in the setting of Hilbert spaces. Our scheme can be regarded as a more general variant of the algorithm proposed by Maingé.
文摘In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. Two results under weaker conditions are presented. The methods rely on a fixed point theorem for contraction multi-valued maps due to Covitz and Nadler and Schaefer's fixed point theorem combined with lower semi-continuous multi-valued operators with decomposable values.
基金Supported by the NSF of China(Grant Nos.11771063,11971082 and 12171062)the Natural Science Foundation of Chongqing(Grant No.cstc2020jcyj-msxm X0455)+2 种基金Science and Technology Project of Chongqing Education Committee(Grant No.KJZD-K201900504)the Program of Chongqing Innovation Research Group Project in University(Grant No.CXQT19018)Open Fund of Tianjin Key Lab for Advanced Signal Processing(Grant No.2019ASP-TJ03)。
文摘In this paper,we investigate a new inertial viscosity extragradient algorithm for solving variational inequality problems for pseudo-monotone and Lipschitz continuous operator and fixed point problems for quasi-nonexpansive mappings in real Hilbert spaces.Strong convergence theorems are obtained under some appropriate conditions on the parameters.Finally,we give some numerical experiments to show the advantages of our proposed algorithms.The results obtained in this paper extend and improve some recent works in the literature.