In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation functio...In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation function: D(x,y)≤ 17/32 (ρ(x, y) + 1) (ρ(x + y/2, y/2) +ρ(x - y/2, y/2) +2) , which improves the results before. We also show that the above result is asymptotically precise.展开更多
The Leibniz-Hopf algebra is the free associative algebra with one generator in each positive degree and coproduct given by the Cartan formula. Quasi-symmetric functions are a generalisation of symmetric functions [7],...The Leibniz-Hopf algebra is the free associative algebra with one generator in each positive degree and coproduct given by the Cartan formula. Quasi-symmetric functions are a generalisation of symmetric functions [7],and the algebra of quasi-symmetric functions appear as the dual of the Leibniz-Hopf algebra. The Leibniz-Hopf algebra and its dual are word Hopf algebras and play an important role in combinatorics, algebra and topology. We give some properties of words and consider an another view of proof for the antipode in the dual Leibniz-Hopf algebra.展开更多
This paper is a continuation of our previous paper[Front.Math.China,2017,12(5):10231043]where global algorithms for computing the maximal cigcnpair were introduced in a rather general setup.The efficiency of the globa...This paper is a continuation of our previous paper[Front.Math.China,2017,12(5):10231043]where global algorithms for computing the maximal cigcnpair were introduced in a rather general setup.The efficiency of the global algorithms is improved in this paper in terms of a good use of power iteration and two quasi-symmetric techniques.Finally,the new algorithms are applied to Hua’s economic optimization model.展开更多
基金Supported by the National Natural Science Foundation of China(10271077)Supported by the Educational Department of Zhejiang Province Natural Science Project(20030768)
文摘In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation function: D(x,y)≤ 17/32 (ρ(x, y) + 1) (ρ(x + y/2, y/2) +ρ(x - y/2, y/2) +2) , which improves the results before. We also show that the above result is asymptotically precise.
文摘The Leibniz-Hopf algebra is the free associative algebra with one generator in each positive degree and coproduct given by the Cartan formula. Quasi-symmetric functions are a generalisation of symmetric functions [7],and the algebra of quasi-symmetric functions appear as the dual of the Leibniz-Hopf algebra. The Leibniz-Hopf algebra and its dual are word Hopf algebras and play an important role in combinatorics, algebra and topology. We give some properties of words and consider an another view of proof for the antipode in the dual Leibniz-Hopf algebra.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.11771046)the Project from the Ministry of Education in China,and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘This paper is a continuation of our previous paper[Front.Math.China,2017,12(5):10231043]where global algorithms for computing the maximal cigcnpair were introduced in a rather general setup.The efficiency of the global algorithms is improved in this paper in terms of a good use of power iteration and two quasi-symmetric techniques.Finally,the new algorithms are applied to Hua’s economic optimization model.