Some curvature pinching theorems for compact or complete totally real minimal submanifolds in a quaternion projective space are given,so that the corresponding results due to B. Y.Chen and C. S. Houh as well as Y. B. ...Some curvature pinching theorems for compact or complete totally real minimal submanifolds in a quaternion projective space are given,so that the corresponding results due to B. Y.Chen and C. S. Houh as well as Y. B. Shen are improved and generalized.展开更多
In this paper we completely classify the homogeneous two-spheres,especially,the minimal homogeneous ones in the quaternionic projective space HPn.According to our classification,more minimal constant curved two-sphere...In this paper we completely classify the homogeneous two-spheres,especially,the minimal homogeneous ones in the quaternionic projective space HPn.According to our classification,more minimal constant curved two-spheres in HPnare obtained than what Ohnita conjectured in the paper"Homogeneous harmonic maps into complex projective spaces.Tokyo J Math,1990,13:87–116".展开更多
We study conformal minimal two-spheres immersed into the quaternionic projective spaceℍP^(n) by using the twistor map.We present a method to construct new minimal two-spheres with constant curvature inℍP^(n),based on ...We study conformal minimal two-spheres immersed into the quaternionic projective spaceℍP^(n) by using the twistor map.We present a method to construct new minimal two-spheres with constant curvature inℍP^(n),based on the minimal property and horizontal condition of Veronese map in complex projective space.Then we construct some concrete examples of conformal minimal two-spheres inℍP^(n) with constant curvature 2/n,n=4,5,6,respectively.Finally,we prove that there exist conformal minimal two-spheres with constant curvature 2/n inℍP^(n)(n≥7).展开更多
文摘Some curvature pinching theorems for compact or complete totally real minimal submanifolds in a quaternion projective space are given,so that the corresponding results due to B. Y.Chen and C. S. Houh as well as Y. B. Shen are improved and generalized.
基金supported by National Natural Science Foundation of China(Grant Nos.11471299,11401481 and 11331002)。
文摘In this paper we completely classify the homogeneous two-spheres,especially,the minimal homogeneous ones in the quaternionic projective space HPn.According to our classification,more minimal constant curved two-spheres in HPnare obtained than what Ohnita conjectured in the paper"Homogeneous harmonic maps into complex projective spaces.Tokyo J Math,1990,13:87–116".
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.11871450).
文摘We study conformal minimal two-spheres immersed into the quaternionic projective spaceℍP^(n) by using the twistor map.We present a method to construct new minimal two-spheres with constant curvature inℍP^(n),based on the minimal property and horizontal condition of Veronese map in complex projective space.Then we construct some concrete examples of conformal minimal two-spheres inℍP^(n) with constant curvature 2/n,n=4,5,6,respectively.Finally,we prove that there exist conformal minimal two-spheres with constant curvature 2/n inℍP^(n)(n≥7).