The calculation of the hardness profile is a powerful tool for the selection of the right steel for a given purpose. Computer programs INC-PHATRAN and INDUCTER-B were formerly developed by the authors for the calculat...The calculation of the hardness profile is a powerful tool for the selection of the right steel for a given purpose. Computer programs INC-PHATRAN and INDUCTER-B were formerly developed by the authors for the calculation of hardness profiles after heat treatment processes of low alloy and carbon steels. The first one simulates quenching as well as through hardening operations, and the second one models electromagnetic induction heat treatments processes. These codes make use of the SAE Standard 3406 in order to obtain the hardness profile, with enhanced regression coefficients recently obtained by the authors. The present work broadens the field of application of this method, allowing to apply it for low hardenability tool steels such as the ASTM O1 Tool Steel. The method used for the calculation of the hardness profile is here summarized, and an example of application is described, which shows good correspondence between the calculated and measured values.展开更多
This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS). The magnetic field is provided by one main, two bucking and four racetrack coils. The main coil produces a central...This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS). The magnetic field is provided by one main, two bucking and four racetrack coils. The main coil produces a central field of up to 7 T and the effective length is more than 140 mm, the two bucking coils can shield most of the fringe field, and the four racetrack superconducting coils produce the steering magnetic field. Its leakage field in the cavity zone is about 5 × 10^-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively. The quench calculations and protection system are also discussed.展开更多
文摘The calculation of the hardness profile is a powerful tool for the selection of the right steel for a given purpose. Computer programs INC-PHATRAN and INDUCTER-B were formerly developed by the authors for the calculation of hardness profiles after heat treatment processes of low alloy and carbon steels. The first one simulates quenching as well as through hardening operations, and the second one models electromagnetic induction heat treatments processes. These codes make use of the SAE Standard 3406 in order to obtain the hardness profile, with enhanced regression coefficients recently obtained by the authors. The present work broadens the field of application of this method, allowing to apply it for low hardenability tool steels such as the ASTM O1 Tool Steel. The method used for the calculation of the hardness profile is here summarized, and an example of application is described, which shows good correspondence between the calculated and measured values.
基金Supported by National Natural Science Foundation of China (91026001)
文摘This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS). The magnetic field is provided by one main, two bucking and four racetrack coils. The main coil produces a central field of up to 7 T and the effective length is more than 140 mm, the two bucking coils can shield most of the fringe field, and the four racetrack superconducting coils produce the steering magnetic field. Its leakage field in the cavity zone is about 5 × 10^-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively. The quench calculations and protection system are also discussed.