期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Determination of Quinolone Antibiotics in Water Using Solid Phase Extraction-High Performance Liquid Chromatography-Fluorescence Method
1
作者 WANG Qiao-jun YI Ru-han MO Ce-hui 《Animal Husbandry and Feed Science》 CAS 2011年第2期45-48,共4页
[Objective] To develop a solid phase extraction-high performance liquid chromatography-fluorescence method for determination of quin- olone antibiotics in water. [ Metbod] The standard curves of four quinolones (norf... [Objective] To develop a solid phase extraction-high performance liquid chromatography-fluorescence method for determination of quin- olone antibiotics in water. [ Metbod] The standard curves of four quinolones (norfloxacin, ciprofloxacin, Iomefloxacin and enrofloxacin) were pre- pared. The detection limit in water and recovery were determined. The water samples collected from different areas, river and tap water were trea- ted using solid-phese extraction method and analyzed by high performance liquid chromatography. Then the concentration of quinolones antibiotics was determined by fluorescence method. [ Result] The detection limit of quinolone antibiotics in water was 0.083 -0.248 μg/L, and their recovery was 63.7% -134.1%. The four quinolone antibiotics at different levels were detected in various water samples, and the total concentration of quin- olone antibiotics was 0.045 -3.969 μg/L. The total concentration of quinolone antibiotics was higher in the water samples collected from rivers in Shenzhen area than in the sewage samples. The four quinolone antibiotics could be detected in all tap water samples. [ CoaduLsion ] The solid phase extraction-high performance liquid chromatography-fluorescence method is feasible and effective to detect quinolones in water. In addition, this method needs low cost and can meet requirements of daily monitorina and analysis. 展开更多
关键词 Solid-phase extraction High performance liquid chromatography WATER quinolone antibiotics
下载PDF
Source apportionment and specific-source-site risk of quinolone antibiotics for effluent-receiving urban rivers and groundwater in a city, China
2
作者 Yu Zhao Yuanmeng Song +4 位作者 Lulu Zhang Bo Zhao Mengqi Lu Jiansheng Cui Wenzhong Tang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第10期185-198,共14页
There is a large surface-groundwater exchange downstream ofwastewater treatment plants(WWTPs),and antibiotics upstream may influence sites downstream of rivers.Thus,samples from 9 effluent-receiving urban rivers(ERURs... There is a large surface-groundwater exchange downstream ofwastewater treatment plants(WWTPs),and antibiotics upstream may influence sites downstream of rivers.Thus,samples from 9 effluent-receiving urban rivers(ERURs)and 12 groundwater sites were collected in Shijiazhuang City in December 2020 and April 2021.For ERURs,8 out of 13 target quinolone antibiotics(QNs)were detected,and the total concentration of QNs in December and April were 100.6-4,398 ng/L and 8.02–2,476 ng/L,respectively.For groundwater,all target QNs were detected,and the total QNs concentration was 1.09–23.03 ng/L for December and 4.54–170.3 ng/L for April.The distribution of QNs was dissimilar between ERURs and groundwater.Most QN concentrations were weakly correlated with land use types in the system.The results of a positive matrix factorization model(PMF)indicated four potential sources of QNs in both ERURs and groundwater,and WWTP effluents were the main source of QNs.From December to April,the contribution of WWTP effluents and agricultural emissions increased,while livestock activities decreased.Singular value decomposition(SVD)results showed that the spatial variation of most QNs was mainly contributed by sites downstream(7.09%-88.86%)of ERURs.Then,a new method that combined the results of SVD and PMF was developed for a specific-source-site risk quotient(SRQ),and the SRQ for QNs was at high level,especially for the sites downstream of WWTPs.Regarding temporal variation,the SRQ for WWTP effluents,aquaculture,and agricultural emissions increased.Therefore,in order to control the antibiotic pollution,more attention should be paid to WWTP effluents,aquaculture,and agricultural emission sources for the benefit of sites downstream of WWTPs. 展开更多
关键词 Source apportionment Singular value decomposition Positive matrix factorization model quinolone antibiotics(QNs) Specific-source-site risk quotient(SRQ) WWTP effluents
原文传递
A new Eu-MOF for ratiometrically fluorescent detection toward quinolone antibiotics and selective detection toward tetracycline antibiotics 被引量:11
3
作者 Chao-Yang Wang Chong-Chen Wang +5 位作者 Xiu-Wu Zhang Xue-Ying Ren Baoyi Yu Peng Wang Zi-Xuan Zhao Huifen Fu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1353-1357,共5页
Development of new self-calibrating fluorescent sensing methods has been a popular research field with the aim of protecting the human health and environment sustainability. In this work, a novel Eu-based metal organi... Development of new self-calibrating fluorescent sensing methods has been a popular research field with the aim of protecting the human health and environment sustainability. In this work, a novel Eu-based metal organic framework(MOF) Eu(2,6-NDC)(COO)(BUC-88) was developed by employing 2,6-NDC(2,6-naphthalenedicarboxylic acid) as bridging ligands. BUC-88 performed different sensing process toward quinolone antibiotics and tetracyclines antibiotics in terms of fluorescence intensity and color. BUC-88exhibited excellent selectivity and sensitivity detection property toward enrofloxacin(ENR), norfloxacin(NOR) and ciprofloxacin(CIP) over other Pharmaceutical and Personal Care Products(PPCPs), accomplishing the detection limit of 0.12 μmol/L, 0.52 μmol/L, 0.75 μmol/L, respectively. Notably, BUC-88 acted as an excellent fluorescence sensor for tetracyclines antibiotics with fast response time(less than 1 s), high selectivity and sensitivity(LODs = 0.08 μmol/L). The fluorescent detection method was successfully used for visual and ultrasensitive detection of ENR, NOR, CIP and tetracycline hydrochloride(TC) in lake water with satisfied recovery from 99.75% to 102.30%. Finally, the photoinduced electron transfer and the competitive absorption of ultraviolet light are the main mechanisms for sensitive detection toward quinolone antibiotics and tetracyclines antibiotics. 展开更多
关键词 Metal-organic framework Fluorescent detection SENSOR quinolone antibiotics Tetracyclines antibiotics
原文传递
Investigation on the Veterinary Antibiotics Contamination in Groundwater with SPE-LC/MS/MS
4
作者 LI Li ZHANG Zhen-ya LV Xing 《Animal Husbandry and Feed Science》 CAS 2013年第4期157-161,共5页
[Objective]The aim is to provide data support for the prevention and control of pollution of exogenous chemical in pig breeding industry.[Methods]Solid-phase extraction(SPE)and tandem mass(LC-MS/MS)were used for d... [Objective]The aim is to provide data support for the prevention and control of pollution of exogenous chemical in pig breeding industry.[Methods]Solid-phase extraction(SPE)and tandem mass(LC-MS/MS)were used for determining four classes(tetracyclines,quinolones,macrolides and sulfonamides)of 10 common veterinary antibiotics in groundwater of an important pig breeding base in the Yangtze River Delta region of China.[Results]Results revealed the total concentration of the ten antibiotics in urban rivers ranged from 20.1 ng /L to 61.2 ng /L.The highest proportion was taken by tetracyclines,account for 95%,the concentration was up to 44.0 ng /L.Quinolones shared the second largest proportion of total concentration,about 29%,the concentration was up to 21.6 ng /L,while concentration of sulfonamides and macrolides were respectively below 2.7 ng /L and 6.3 ng /L.The highest total concentration of the ten antibiotics in rural rivers was up to 467 ng /L,60% of which was shared by tetracyclines,the highest concentration of tetracyclines was 253 ng /L.Sulfonamides share 20% of the total concentration,the highest concentration of it was 165 ng /L.The highest concentration of macrolides and quinolones was 14.6 ng /L and 14.5 ng /L,respectively.[Conclusion] Antibiotics' pollution in town rivers is more serious than urban rivers' pollution caused by antibiotics. 展开更多
关键词 Veterinary antibiotics Tetracyclines Macrolides quinolones Sulfonamides Groundwater SPE-LC-MS /MS
下载PDF
Upcycling biomass waste into Fe single atom catalysts for pollutant control 被引量:4
5
作者 Xin Li Kang Hu +7 位作者 Yizhe Huang Qingqing Gu Yuwen Chen Bing Yang Rongliang Qiu Wenhao Luo Bert M.Weckhuysen Kai Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期282-291,I0008,共11页
Contaminants of heavy metals and antibiotics, which are frequently detected in water, soil and food chains with increasing prevalence in our current society, can cause potential harm to human health and disrupt human ... Contaminants of heavy metals and antibiotics, which are frequently detected in water, soil and food chains with increasing prevalence in our current society, can cause potential harm to human health and disrupt human ecosystem irreversibly. Herein, we have successfully utilized biomass waste ferns contaminated by iron mines, to fabricate a first-of-its-kind high-performance class of Fe single-atom catalysts(FeSAC) by a facile pyrolysis. The optimal FeSAC-800 shows an excellent efficiency in the fastphotocatalytic degradation of six types of quinolone antibiotics(e.g., norfloxacin, levofloxacin, ciprofloxacin, enrofloxacin, lomefloxacin, flumequine) in 1 h under the simulated natural light irradiation. Based on advanced characterization, a well-defined structure of FeN_(4), confined in the porous carbon is elaborated for the FeSAC-800. Mechanism of the photodegradation is via a Fenton-like oxidation process whereas the reactive oxygen species play a key role. These findings open a new avenue for efficient, sustainable utilization of biomass waste in pollutant control. 展开更多
关键词 Single-atom catalysts PHOTOCATALYSIS Biomass waste quinolone antibiotics SUSTAINABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部