To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as ...To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.展开更多
In order to solve the problem of inter-vehicle communication (IVC) in vast and desolate areas such as the desert and the Gobi, two vehicle network models are proposed. One is based on satellite communication and the...In order to solve the problem of inter-vehicle communication (IVC) in vast and desolate areas such as the desert and the Gobi, two vehicle network models are proposed. One is based on satellite communication and the other is based on high altitude platform ( HAP ) communication. The system outline and networking modes of the two models are described. In the satellite communication based model, all the vehicles are equipped with vehicle-bone satellite communication on the move terminals and the communication signals between vehicles are forwarded by satellite. In the high altitude platform-based model, the HAPs are equipped with base station facilities to form aerial base stations, and vehicles can communicate with each other via common terrestrial mobile communication devices. Some key parameters such as path loss, link loss and system capacity are also computed. The analysis shows that both the two models can satisfy the requirement of IVC in the descriptive environment.展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean...The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean. This system can suit to the climate environment of very high temperature high moisture and very low temperature - supersaturation; it has a self-protection ability to against the hurricane - force wind over force 12 and the strong vibration during icebreaking, as well as strong magnetic disturbance. It has two sets of receiving-imagery processing systems for polar orbit low-resolution and quasi-stationary high-solution satellites. The key creation Points of this system are as follows: 1. the active gyro-control stabilization platform and a mixed mounting system of three rotating a - B and x -- y axes are used. It solved the tracing difficulties both in the low elevation angle and very high elevation angle of polar-orbit satellite, even in the status of ship moving with continuously changing its poition, direction and ship roll and pitch. 2. Imagery processing subsystem. The newest BORLAND-- DELPHI language and PASCAL language pro gramming software are used under WINDOWS 95 environment. It has a dynamic positioning nested-grid system and electric mapping grid data system. It can show the latitude-longitude of any point on the map, and marks any object such as ship, station or island, and draws the route. It can monitor cloud and temperature, forest fire, anomalous change of ocean and land. It can output satellite cloud maps of 24 bit with very high clarity. This system is very advanced in technique for the whole structure with the features of small volume, light weight and very low cost. It suits to very bad climate and ocean environment. Its imagery process ing system has complete functions with high resolution and being very easy to operate. It is not only suit to land use, but also and specially to all kinds of ship over the sea. It can be extended to domestic and international use. This system played a very important role in the 14th Chinese Antarctic Exploration Navigation, and was introduced a broad attention paid by Chinese newspapers and TV Stations.展开更多
SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to m...SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to meet the observation requirements of various payloads.Due to the limitation of platform power supply and data storage systems,proposing reasonable mission planning schemes to improve scientific revenue of the payloads becomes a critical issue.In this article,we formulate the integrated task scheduling of SATech-01 as a multi-objective optimization problem and propose a novel Fair Integrated Scheduling with Proximal Policy Optimization(FIS-PPO)algorithm to solve it.We use multiple decision heads to generate decisions for each task and design the action mask to ensure the schedule meeting the platform constraints.Experimental results show that FIS-PPO could push the capability of the platform to the limit and improve the overall observation efficiency by 31.5%compared to rule-based plans currently used.Moreover,fairness is considered in the reward design and our method achieves much better performance in terms of equal task opportunities.Because of its low computational complexity,our task scheduling algorithm has the potential to be directly deployed on board for real-time task scheduling in future space projects.展开更多
The coastal zone and offshore are clearly of major economic and social importance, in thesame time it causes a series of problems of resources and ecosystem too. The research on and development of integrated applicati...The coastal zone and offshore are clearly of major economic and social importance, in thesame time it causes a series of problems of resources and ecosystem too. The research on and development of integrated application techniques for remote sensing provide not only a microcosmic and dynamic and synchronous technical means to the monitor, but also an integrated technical scheme to harmonically solve the ecological environment problem. The system is designed to focus on the application techniques of multi-sources remote sensing data. By developing remote sensing information extraction module, integrated user platform, and application module objected to the real ocean procedure for China' s coastal zone and offshore, the information system consists of the management of prodigious amount of data, display, analysis, simulation and output will be constructed and implemented. The final objective is to transform the research on ocean remote sensing into application.展开更多
This report briefly introduces the current status of the CSES(China Seismo-Electromagnetic Satellite)mission which includes the first satellite CSES 01 in-orbit(launched in February 2018),and the second satellite CSES...This report briefly introduces the current status of the CSES(China Seismo-Electromagnetic Satellite)mission which includes the first satellite CSES 01 in-orbit(launched in February 2018),and the second satellite CSES 02(will be launched in 2023)under development.The CSES 01 has been steadily operating in orbit for over four years,providing abundant global geophysical field data,including the background geomagnetic field,the electromagnetic field and wave,the plasma(in-situ and profile data),and the energetic particles in the ionosphere.The CSES 01 platform and the scientific instruments generally perform well.The data validation and calibration are vital for CSES 01,for it aims to monitor earthquakes by extracting the very weak seismic precursors from a relatively disturbing space electromagnetic environment.For this purpose,we are paying specific efforts to validate data quality comprehensively.From the CSES 01 observations,we have obtained many scientific results on the ionosphere electromagnetic environment,the seismo-ionospheric disturbance phenomena,the space weather process,and the Lithosphere-Atmosphere-Ionosphere coupling mechanism.展开更多
A new multilayered inter satellite-high altitude platform (HAP) system routing algorithm is proposed,which is mainly based on multipath routing to ensure the network reliability.The proposed multipath routing scheme...A new multilayered inter satellite-high altitude platform (HAP) system routing algorithm is proposed,which is mainly based on multipath routing to ensure the network reliability.The proposed multipath routing scheme principally relies on splitting the traffic between different paths to make the best utilization of multiple routes.Linear programming is the main method used for multipath selection.The major constraints to the quality of service (QoS) (delay and link utilization) have been taken into account to meet the criteria of the advanced multimedia applications.Due to the effect of link utilization,the system encounters traffic flow oscillation between paths over time,which affects the system performance.Hence,to fix this issue,we propose a cognitive routing algorithm which reacts to the long-term changes of the traffic loads rather than short-term ones.The performance of the proposed routing techniques has been evaluated using appropriate simulation models and implemented by Matlab.展开更多
High-precision detection in fundamental space physics,such as space gravitational wave detection,high-precision earth gravity field measurement,and reference frame drag effect measurement,is the key to achieving impor...High-precision detection in fundamental space physics,such as space gravitational wave detection,high-precision earth gravity field measurement,and reference frame drag effect measurement,is the key to achieving important breakthroughs in the scientific study of fundamental space physics.Acquiring high-precision measurements requires high-performance satellite platforms to achieve“drag-free control”in a near“pure gravity”flight environment.The critical technology for drag-free control is variable thrust control at the micro-Newton scale.Thrust noise is the most important technical indicator for achieving drag-free flight.However,there is no literature about the current status and future prospects of variable thrust control based on thrust noise.Therefore,the micro-Newton variable thrust control technology and the thrust noise of the drag-free satellite platform are reviewed in this work.Firstly,the research status of micro-Newton scale variable thrust control technology and its applications to drag-free satellite platforms are introduced.Then,the noise problem is analyzed in detail and its solution is theoretically investigated in three aspects:“cross-basin flow problem,”“control problem,”and“system instability and multiple-coupled problem.”Finally,a systematic overview is presented and the corresponding suggested directions of research are discussed.This work provides detailed understanding and support for realizing low-noise variable thrust control in the next generation of drag-free satellites.展开更多
The aim of this paper is to assess business performances of a satellite TV--Korea Telecom Skylife (KTS)---to innovate its business model related to current technical events such as hybrid platform, digital conversio...The aim of this paper is to assess business performances of a satellite TV--Korea Telecom Skylife (KTS)---to innovate its business model related to current technical events such as hybrid platform, digital conversion, and Intemet connected TV. For this, a theoretical logic is approached what levels of business model innovations there are, based on the "business model framework (BMF)" theory by Henry Chesbrough. Based on this theoretical backdrop, this study focuses on KTS's approach to utilize technical events to develop its business model and contribute to the company's earnings and operating cost expenditure. In conclusion, it will show the feasibility and the limitation to upgrade this firm's business model innovation in the smart media business ecosystem based on the last technical event, Internet connected TV.展开更多
针对传统基于文档的系统工程方法在高复杂度卫星互联网仿真平台开发中存在的系统设计协调性差及早期仿真验证不足等问题,提出采用基于模型的系统工程(model-based systems engineering,MBSE)方法开展卫星互联网仿真平台架构建模。首先,...针对传统基于文档的系统工程方法在高复杂度卫星互联网仿真平台开发中存在的系统设计协调性差及早期仿真验证不足等问题,提出采用基于模型的系统工程(model-based systems engineering,MBSE)方法开展卫星互联网仿真平台架构建模。首先,提出基于MBSE的双V模型(dual V model based on MBSE,DVMBSE)及与外部软件集成验证架构;然后,基于MBSE方法论对卫星互联网仿真平台顶层架构开展需求分析、功能分解及交互结构建模;最后,通过运行逻辑验证与外部模型集成验证实现了模型的有效性验证,从而支撑卫星互联网设计论证。展开更多
文摘To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.
基金FThe National High Technology Research and Development Program of China (863 Program) (No. 2008AA01Z205)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province (No. BA2010023)+1 种基金the Natural Science Foundation of Hainan Province (No. 609008)Sanya University and Local Government Technological Cooperative Project (No. 2010YD29)
文摘In order to solve the problem of inter-vehicle communication (IVC) in vast and desolate areas such as the desert and the Gobi, two vehicle network models are proposed. One is based on satellite communication and the other is based on high altitude platform ( HAP ) communication. The system outline and networking modes of the two models are described. In the satellite communication based model, all the vehicles are equipped with vehicle-bone satellite communication on the move terminals and the communication signals between vehicles are forwarded by satellite. In the high altitude platform-based model, the HAPs are equipped with base station facilities to form aerial base stations, and vehicles can communicate with each other via common terrestrial mobile communication devices. Some key parameters such as path loss, link loss and system capacity are also computed. The analysis shows that both the two models can satisfy the requirement of IVC in the descriptive environment.
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.
基金the State Oceanic Administration "95" Principal Project "9501" National Antarctic"95" Principal
文摘The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean. This system can suit to the climate environment of very high temperature high moisture and very low temperature - supersaturation; it has a self-protection ability to against the hurricane - force wind over force 12 and the strong vibration during icebreaking, as well as strong magnetic disturbance. It has two sets of receiving-imagery processing systems for polar orbit low-resolution and quasi-stationary high-solution satellites. The key creation Points of this system are as follows: 1. the active gyro-control stabilization platform and a mixed mounting system of three rotating a - B and x -- y axes are used. It solved the tracing difficulties both in the low elevation angle and very high elevation angle of polar-orbit satellite, even in the status of ship moving with continuously changing its poition, direction and ship roll and pitch. 2. Imagery processing subsystem. The newest BORLAND-- DELPHI language and PASCAL language pro gramming software are used under WINDOWS 95 environment. It has a dynamic positioning nested-grid system and electric mapping grid data system. It can show the latitude-longitude of any point on the map, and marks any object such as ship, station or island, and draws the route. It can monitor cloud and temperature, forest fire, anomalous change of ocean and land. It can output satellite cloud maps of 24 bit with very high clarity. This system is very advanced in technique for the whole structure with the features of small volume, light weight and very low cost. It suits to very bad climate and ocean environment. Its imagery process ing system has complete functions with high resolution and being very easy to operate. It is not only suit to land use, but also and specially to all kinds of ship over the sea. It can be extended to domestic and international use. This system played a very important role in the 14th Chinese Antarctic Exploration Navigation, and was introduced a broad attention paid by Chinese newspapers and TV Stations.
基金supported by the Strategic Priority Program on Space Science,Chinese Academy of Sciences。
文摘SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to meet the observation requirements of various payloads.Due to the limitation of platform power supply and data storage systems,proposing reasonable mission planning schemes to improve scientific revenue of the payloads becomes a critical issue.In this article,we formulate the integrated task scheduling of SATech-01 as a multi-objective optimization problem and propose a novel Fair Integrated Scheduling with Proximal Policy Optimization(FIS-PPO)algorithm to solve it.We use multiple decision heads to generate decisions for each task and design the action mask to ensure the schedule meeting the platform constraints.Experimental results show that FIS-PPO could push the capability of the platform to the limit and improve the overall observation efficiency by 31.5%compared to rule-based plans currently used.Moreover,fairness is considered in the reward design and our method achieves much better performance in terms of equal task opportunities.Because of its low computational complexity,our task scheduling algorithm has the potential to be directly deployed on board for real-time task scheduling in future space projects.
基金This study was supported by Project 2001AA633010 from "863"Marine Monitor of Hi-Tech Research and Develop-ment Program of China.
文摘The coastal zone and offshore are clearly of major economic and social importance, in thesame time it causes a series of problems of resources and ecosystem too. The research on and development of integrated application techniques for remote sensing provide not only a microcosmic and dynamic and synchronous technical means to the monitor, but also an integrated technical scheme to harmonically solve the ecological environment problem. The system is designed to focus on the application techniques of multi-sources remote sensing data. By developing remote sensing information extraction module, integrated user platform, and application module objected to the real ocean procedure for China' s coastal zone and offshore, the information system consists of the management of prodigious amount of data, display, analysis, simulation and output will be constructed and implemented. The final objective is to transform the research on ocean remote sensing into application.
基金Supported by the National Natural Science Foundation of China(4187417,42104159)National Key R&D Program of China(2018YFC1503501)+1 种基金the APSCO Earthquake Research Project PhaseⅡthe Dragon 5 cooperation 2020-2024(ID.59236)。
文摘This report briefly introduces the current status of the CSES(China Seismo-Electromagnetic Satellite)mission which includes the first satellite CSES 01 in-orbit(launched in February 2018),and the second satellite CSES 02(will be launched in 2023)under development.The CSES 01 has been steadily operating in orbit for over four years,providing abundant global geophysical field data,including the background geomagnetic field,the electromagnetic field and wave,the plasma(in-situ and profile data),and the energetic particles in the ionosphere.The CSES 01 platform and the scientific instruments generally perform well.The data validation and calibration are vital for CSES 01,for it aims to monitor earthquakes by extracting the very weak seismic precursors from a relatively disturbing space electromagnetic environment.For this purpose,we are paying specific efforts to validate data quality comprehensively.From the CSES 01 observations,we have obtained many scientific results on the ionosphere electromagnetic environment,the seismo-ionospheric disturbance phenomena,the space weather process,and the Lithosphere-Atmosphere-Ionosphere coupling mechanism.
文摘A new multilayered inter satellite-high altitude platform (HAP) system routing algorithm is proposed,which is mainly based on multipath routing to ensure the network reliability.The proposed multipath routing scheme principally relies on splitting the traffic between different paths to make the best utilization of multiple routes.Linear programming is the main method used for multipath selection.The major constraints to the quality of service (QoS) (delay and link utilization) have been taken into account to meet the criteria of the advanced multimedia applications.Due to the effect of link utilization,the system encounters traffic flow oscillation between paths over time,which affects the system performance.Hence,to fix this issue,we propose a cognitive routing algorithm which reacts to the long-term changes of the traffic loads rather than short-term ones.The performance of the proposed routing techniques has been evaluated using appropriate simulation models and implemented by Matlab.
基金supported by the National Natural Science Foundation of China(Nos.52105070 and U21B2074).
文摘High-precision detection in fundamental space physics,such as space gravitational wave detection,high-precision earth gravity field measurement,and reference frame drag effect measurement,is the key to achieving important breakthroughs in the scientific study of fundamental space physics.Acquiring high-precision measurements requires high-performance satellite platforms to achieve“drag-free control”in a near“pure gravity”flight environment.The critical technology for drag-free control is variable thrust control at the micro-Newton scale.Thrust noise is the most important technical indicator for achieving drag-free flight.However,there is no literature about the current status and future prospects of variable thrust control based on thrust noise.Therefore,the micro-Newton variable thrust control technology and the thrust noise of the drag-free satellite platform are reviewed in this work.Firstly,the research status of micro-Newton scale variable thrust control technology and its applications to drag-free satellite platforms are introduced.Then,the noise problem is analyzed in detail and its solution is theoretically investigated in three aspects:“cross-basin flow problem,”“control problem,”and“system instability and multiple-coupled problem.”Finally,a systematic overview is presented and the corresponding suggested directions of research are discussed.This work provides detailed understanding and support for realizing low-noise variable thrust control in the next generation of drag-free satellites.
文摘The aim of this paper is to assess business performances of a satellite TV--Korea Telecom Skylife (KTS)---to innovate its business model related to current technical events such as hybrid platform, digital conversion, and Intemet connected TV. For this, a theoretical logic is approached what levels of business model innovations there are, based on the "business model framework (BMF)" theory by Henry Chesbrough. Based on this theoretical backdrop, this study focuses on KTS's approach to utilize technical events to develop its business model and contribute to the company's earnings and operating cost expenditure. In conclusion, it will show the feasibility and the limitation to upgrade this firm's business model innovation in the smart media business ecosystem based on the last technical event, Internet connected TV.
文摘针对传统基于文档的系统工程方法在高复杂度卫星互联网仿真平台开发中存在的系统设计协调性差及早期仿真验证不足等问题,提出采用基于模型的系统工程(model-based systems engineering,MBSE)方法开展卫星互联网仿真平台架构建模。首先,提出基于MBSE的双V模型(dual V model based on MBSE,DVMBSE)及与外部软件集成验证架构;然后,基于MBSE方法论对卫星互联网仿真平台顶层架构开展需求分析、功能分解及交互结构建模;最后,通过运行逻辑验证与外部模型集成验证实现了模型的有效性验证,从而支撑卫星互联网设计论证。