The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks...The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks has been occurring in Asia,but also in Europe,increasing the number of transition zones.The transition zones are a special area of the railway networks where there is an accelerated process of track degradation,which is a major concern of the railway infrastructure managers.Thus,the accurate prediction of the short-and long-term performance of ballastless tracks in transition zones is an important topic in the current paradigm of building/rehabilitating high-speed lines.This work purposes the development of an advanced 3D model to study the global performance of a ballastless track in an embankment-tunnel transition zone considering the influence of the train speed(220,360,500,and 600 km/h).Moreover,a mitigation measure is also adopted to reduce the stress and displacements levels of the track in the transition.A resilient mat placed in the tunnel and embank-ment aims to soften the transition.The behaviour of the track with the resilient mat is evaluated considering the influence of the train speed,with special attention regarding the critical speed.The used methodology is a novel and hybrid approach that allows including short-term and long-term performance,through the development of a powerful 3D model combined with the implementation of a calibrated empirical permanent deformation model.展开更多
In grassland ecosystems,the aerodynamic roughness(Z0)and frictional wind speed(u*)contribute to the aerodynamic impedance of the grassland canopy.Thus,they are often used in the studies of wind erosion and evapotransp...In grassland ecosystems,the aerodynamic roughness(Z0)and frictional wind speed(u*)contribute to the aerodynamic impedance of the grassland canopy.Thus,they are often used in the studies of wind erosion and evapotranspiration.However,the effect of wind speed and grazing measures on the aerodynamic impedance of the grassland canopy has received less analysis.In this study,we monitored wind speeds at multiple heights in grazed and grazing-prohibited grasslands for 1 month in 2021,determined the transit wind speed at 2.0 m height by comparing wind speed differences at the same height in both grasslands,and divided these transit wind speeds at intervals of 2.0 m/s to analyze the effect of the transit wind speed on the relationship among Z0,u*,and wind speed within the grassland canopy.The results showed that dividing the transit wind speeds into intervals has a positive effect on the logarithmic fit of the wind speed profile.After dividing the transit wind speeds into intervals,the wind speed at 0.1 m height(V0.1)gradually decreased with the increase of Z0,exhibiting three distinct stages:a sharp change zone,a steady change zone,and a flat zone;while the overall trend of u*increased first and then decreased with the increase of V0.1.Dividing the transit wind speeds into intervals improved the fitting relationship between Z0 and V0.1 and changed their fitting functions in grazed and grazing-prohibited grasslands.According to the computational fluid dynamic results,we found that the number of tall-stature plants has a more significant effect on windproof capacity than their height.The results of this study contribute to a better understanding of the relationship between wind speed and the aerodynamic impedance of vegetation in grassland environments.展开更多
Through introducing a generalized optimal speed function to consider spatial position, slope grade and variable safe headway, the effect of slope in a single-lane highway on the traffic flow is investigated with the e...Through introducing a generalized optimal speed function to consider spatial position, slope grade and variable safe headway, the effect of slope in a single-lane highway on the traffic flow is investigated with the extended optimal speed model. The theoretical analysis and simulation results show that the flux of the whole road with the upgrade (or downgrade) increases linearly with density, saturates at a critical density, then maintains this saturated value in a certain density range and finally decreases with density. The value of saturated flux is equal to the maximum flux of the upgrade (or downgrade) without considering the slight influence of the driver's sensitivity. And the fundamental diagrams also depend on sensitivity, slope grade and slope length. The spatiotemporal pattern gives the segregation of different traffic phases caused by the rarefaction wave and the shock wave under a certain initial vehicle number. A comparison between the upgrade and the downgrade indicates that the value of saturated flux of the downgrade is larger than that of the upgrade under the same condition. This result is in accordance with the real traffic.展开更多
Small rural communities located along major state or county roadways typically find most of the traffic along their main thoroughfares is pass-through rather than local traffic. Unfortunately, drivers passing through ...Small rural communities located along major state or county roadways typically find most of the traffic along their main thoroughfares is pass-through rather than local traffic. Unfortunately, drivers passing through these communities often enter at high rates of speeds, which are often significantly higher than the speed limit of the local segment. Speed management in rural areas requires different considerations compared to urban areas and, within the US, rural speed management is not as advanced with little experience or guidance for agencies to draw on. This paper summarizes the results of a study that evaluated, in part, several different types of transverse pavement markings within the speed transition zones in small rural communities. Three different countermeasures were evaluated: converging chevrons, transverse lane markings, and optical speed bars.展开更多
This study aimed to measure stature changes during and after walking and running at a preferred transition speed (PTS) and the recovery period, and to examine differences caused by loads imposed on the spinal column. ...This study aimed to measure stature changes during and after walking and running at a preferred transition speed (PTS) and the recovery period, and to examine differences caused by loads imposed on the spinal column. Seven males and three females aged 22-41 years took part in this study. Subjects The subjects underwent 15 minutes of walking or running on a treadmill in a random order. Stature changes were measured during each exercise at intervals of 5 minutes and after a 20 minute standing recovery period within units of 0.01 mm. Two- way ANOVA revealed that both main factors, gait (F = 5.250, P < 0.05) and elapsed time (F = 14.409, P < 0.05), had a significant effect on stature. In the post hoc test, stature shrank with time and its loss was found to be greater in running than in walking, but recovered after both exercises. In conclusion, the spinal load increases with time during both walking and running at PTS, but is greater in running than in walking. After both exercises, spinal shrinkage shows a similar recovery process and recovers faster in walking to its pre-exercise level.展开更多
In this paper,combined with the relevant speed theory and characteristics of the law,the current highway speed transition design problems are studied and analyzed.In the process of specific analysis,mainly combined wi...In this paper,combined with the relevant speed theory and characteristics of the law,the current highway speed transition design problems are studied and analyzed.In the process of specific analysis,mainly combined with the characteristics of different types of highway speed changes and road section design requirements,this paper studies and analyzes the design methods of different types of highway speed transition section.And on this basis,according to the design principles and requirements of highway operation speed transition section,the paper summarizes the matters needing attention in the design of highway operation speed transition section,in order to provide certain reference value for relevant personnel.展开更多
The ramp wave compression experiments of iron with different thicknesses were performed on the magnetically driven ramp loading device CQ-4.Numerical simulations of this process were done with Hayes multi-phase equati...The ramp wave compression experiments of iron with different thicknesses were performed on the magnetically driven ramp loading device CQ-4.Numerical simulations of this process were done with Hayes multi-phase equation of state (H-MEOS) and dynamic equations of phase transition.The calculated results of H-MEOS are in good agreement with those of shock phase transition,but are different from those under ramp wave compression.The reason for this is that the bulk modulus of the material in the Hayes model and the wave velocity are considered constant.Shock compression is a jump from the initial state to the final state,and the sound speed is related to the slope of the Rayleigh line.However,ramp compression is a continuous process,and the bulk modulus is no longer a constant but a function of pressure and temperature.Based on Mumaghan equation of state,the first-order correction of the bulk modulus on pressure in the Hayes model was carried out.The numerical results of the corrected H-MEOS agree well with those of pure iron in both ramp and shock compression phase transition experiments.The calculated results show that the relaxation time of iron is about 30 ns and the phase transition pressure is about 13 GPa.There are obvious differences between the isentropic and adiabatic process in terms of pressure-specific volume and temperature-pressure.The fluctuation of the sound speed after 13 GPa is caused by the phase transition.展开更多
The synchronous acquisition system of droplet image inspection and arc electric signals were established and the droplet transition characteristics of aluminum alloys were researched in the plasma-MIG welding process....The synchronous acquisition system of droplet image inspection and arc electric signals were established and the droplet transition characteristics of aluminum alloys were researched in the plasma-MIG welding process.Typical droplet transition modes include globular transfer mode,short circuiting transfer mode,metastable spray transfer mode and projected transfer mode.The result indicates that MIG droplet transfer frequency and droplet transfer modes are changed by introducing the plasma arc in the plasma-MIG welding process compared with the MIG welding on the aluminum alloys,which broadens the range of welding parameters when the stable welding process proceeds.The metastable spray transfer and projected transfer mode are proved to be the most optimal modes by comparing the stability of electronic signal,droplet transition,weld appearance and weld penetration.展开更多
The estimation of ship speed in ice ridge fields is important for both route planning and prediction of emergency response time.An analytical method for estimating ship motion in first-year ice ridge is developed base...The estimation of ship speed in ice ridge fields is important for both route planning and prediction of emergency response time.An analytical method for estimating ship motion in first-year ice ridge is developed based on ice resistance models and ship motion equations,in which the effect of ship speed on ridge resistance is taken into account.Two model tests in level ice and one model test in ice ridge for an icebreaking multipurpose vessel are used to validate and benchmark the presented method.The predicted results including level ice resistances,net thrust and ship motion in the ice ridge field are compared with the model test data.The comparisons show that the presented method can generate reasonable results.The effects of input parameters on ship speed,penetration depth and number of necessary rams to transit ridge have been studied.Based on the calibrated model,insights into the ice resistance and the ship motion are obtained.It is found that the energy consumption of the keel obtained by integral calculation of the keel resistance at the penetration distance is with the same magnitude as the result of the maximum keel resistance multiplied by the ridge length.In addition,the effect of ridge width and keel depth on keel resistance and average transit speed is investigated.展开更多
The paper analyzes the concept of Ether and substantiates the necessity of its existence as a physical reality, which arises within the framework of the concept developed by the authors of the work. The authors come t...The paper analyzes the concept of Ether and substantiates the necessity of its existence as a physical reality, which arises within the framework of the concept developed by the authors of the work. The authors come to the conclusion that the existence of Ether in two different forms, plays an exceptional role in the formation of Dark Matter and Dark Energy and leads to the emergence of exotic cosmological structures and their hierarchy in energy, temporal, and spatial scale. The mechanism of the formation of physical structures before the Big Bang and their further evolution, up to the formation of worlds of galaxies and stars, is considered. The necessity of the emergence of exotic structures, such as 3 spheres of the Primary Relict, is shown, its structure and dynamic properties leading to the formation of Order from Chaos are considered. The role of the 1st and 2nd type Ether in the formation of the mechanism of transformation of cosmic energies and quantum phase transitions, in the process of the birth and evolution of the Universe is discussed. The conclusion is made about the existence of universal properties of matter, at the level of Macro and Microcosms, and a multidimensional cosmological model with an isothermal temperature distribution is constructed, leading to a discrete distribution of matter separated by transitions, by analogy with Black-and-White Holes. It is shown that the postulate of the constancy of the speed of light in any inertial system is a consequence of the principle of covariance.展开更多
The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry(PIV) measur...The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry(PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition(POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy(TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content,suggesting an increasing competition of varicose instability against sinuous instability.展开更多
<div style="text-align:justify;"> Based on the Unsteady Reynolds-Averaged Navier-Stokes (URANS) method, this paper studied the effect of the nose shape on the aerodynamic performance when the high-spee...<div style="text-align:justify;"> Based on the Unsteady Reynolds-Averaged Navier-Stokes (URANS) method, this paper studied the effect of the nose shape on the aerodynamic performance when the high-speed train subjected to a windbreak transition under crosswinds. The windbreak transition generated by the irregular terrain from the flat ground to the cutting. The results showed that with the height of the front window increased from Z ? 2 to Z + 2 (the dimensionless height), the side force coefficient <em>C</em><em><sub>y</sub><sup> </sup></em>and rolling moment co-efficient <em>C</em><sub><em>mx </em></sub>increased by 26% and 27% for the head car, respectively. The flow structures around the lower front window were smoother than that around the higher front window. The flow structures in the higher front window resulted in more considerable positive pressure on the windward side (WWS) and top of the nose region. </div>展开更多
The present paper presents an experimental effort on the regeneration process of two low-speed laminar streaks in a zero-pressure-gradient laminar boundary layer. Two vertical thin wires separated by a spanwise distan...The present paper presents an experimental effort on the regeneration process of two low-speed laminar streaks in a zero-pressure-gradient laminar boundary layer. Two vertical thin wires separated by a spanwise distance of 30 mm are used to introduce disturbances of two rolls of transitional Karmain vortex street to the downstream boundary layer. Both hydrogen bubble visualization and particle image velocimetry (PIV) measurement show that two lowspeed streaks are induced through leading-edge receptivity process. As these streaks develop in the downstream, two additional low-speed streaks begin to appear outboard of the flank of the original two, together with complex dynamics of streak splitting and merging. A flow pattern of four streaks aligned along the spanwise direction occurs finally in the far downstream. It is found that besides the mechanisms of streak breakdown, the streak interaction is also an important factor characterizing the instability of low speed streaks and their regeneration process.展开更多
The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special r...The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels.展开更多
The 1990s is a key historical decade in the process of China’s on-going modernization drive.When reviewing the overall picture of the socio-economic trend and S&T development around the world during the last two ...The 1990s is a key historical decade in the process of China’s on-going modernization drive.When reviewing the overall picture of the socio-economic trend and S&T development around the world during the last two decades,we may reach the conclusion that a new technological revolution is taking shape.For both the developed and the developing countries,challenges and opportunities are close at hand.In the Decision to Speed up China’s S&T Progress Jointly Issued by the CPC Central Committee and the State Council.a developmen-展开更多
研究了通过热丝CVD法在施加了Ni-P/Cu复合中间过渡层的W18Cr4V高速钢衬底表面进行金刚石涂层的沉积技术以及不同压力条件对沉积出的CVD金刚石涂层质量的影响。最后通过扫描电镜分别对Cu、Ni-P以及不同反应压力下沉积的金刚石涂层的表面...研究了通过热丝CVD法在施加了Ni-P/Cu复合中间过渡层的W18Cr4V高速钢衬底表面进行金刚石涂层的沉积技术以及不同压力条件对沉积出的CVD金刚石涂层质量的影响。最后通过扫描电镜分别对Cu、Ni-P以及不同反应压力下沉积的金刚石涂层的表面形貌进行了检测分析,通过XRD、拉曼光谱仪、洛氏硬度仪对金刚石涂层性能进行检测分析。结果表明:Ni-P/Cu复合中间过渡层可以明显的抑制Fe、Co的催石墨化作用。在此基础上通过沉积参数的优化,在W18Cr4V高速钢衬底表面成功沉积出高质量的CVD金刚石涂层。压力为4 kPa条件下沉积的CVD金刚石涂层较5 k Pa的金刚石颗粒晶型明显、分布致密。展开更多
The 21st century promises some dramatic changes—some expected, others surprising. One of the more surprising changes is the dramatic peaking in car use and an associated increase in the world’s urban rail systems. T...The 21st century promises some dramatic changes—some expected, others surprising. One of the more surprising changes is the dramatic peaking in car use and an associated increase in the world’s urban rail systems. This paper sets out what is happening with the growth of rail, especially in the traditional car dependent cities of the US and Australia, and why this is happening, particularly its relationship to car use declines. It provides new data on the plateau in the speed of urban car transportation that supports rail’s increasing role compared to cars in cities everywhere, as well as other structural, economic and cultural changes that indicate a move away from car dependent urbanism. The paper suggests that the rise of urban rail is a contributing factor in peak car use through the relative reduction in speed of traffic compared to transit, especially rail, as well as the growing value of dense, knowledge-based centers that depend on rail access for their viability and cultural attraction. Finally, the paper suggests what can be done to make rail work better based on some best practice trends in large cities and small car dependent cities.展开更多
Knowledge of droplet dynamics provides the basis of predicting pressure drops, holdups and corrosion inhibitor distribution in multiphase flow. Droplet size and its distribution also determine the separation efficienc...Knowledge of droplet dynamics provides the basis of predicting pressure drops, holdups and corrosion inhibitor distribution in multiphase flow. Droplet size and its distribution also determine the separation efficiency between different phases. Experimental observations were conducted for droplet impingements with different fluids, droplet sizes and velocities, and film thicknesses. The observed transition boundaries were compared with the models developed by different authors. For impingement on a deep pool surface, the Marengo and Tropea correlation for splashing does not agree with the experimental results in this study. The Bai and Gosman critical Weber number for bouncing agrees with the water results but not the oil results. Three new correlations for transition boundaries between bouncing, coalescence, jetting and splashing were proposed and compared with the experimental observations.展开更多
基金financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020 financially supported by: Base Funding-UIDB/04708/2020 of the CONSTRUCT-Institute of R&D in Structures and Construction-national funds through the FCT/ MCTES (PIDDAC)
文摘The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks has been occurring in Asia,but also in Europe,increasing the number of transition zones.The transition zones are a special area of the railway networks where there is an accelerated process of track degradation,which is a major concern of the railway infrastructure managers.Thus,the accurate prediction of the short-and long-term performance of ballastless tracks in transition zones is an important topic in the current paradigm of building/rehabilitating high-speed lines.This work purposes the development of an advanced 3D model to study the global performance of a ballastless track in an embankment-tunnel transition zone considering the influence of the train speed(220,360,500,and 600 km/h).Moreover,a mitigation measure is also adopted to reduce the stress and displacements levels of the track in the transition.A resilient mat placed in the tunnel and embank-ment aims to soften the transition.The behaviour of the track with the resilient mat is evaluated considering the influence of the train speed,with special attention regarding the critical speed.The used methodology is a novel and hybrid approach that allows including short-term and long-term performance,through the development of a powerful 3D model combined with the implementation of a calibrated empirical permanent deformation model.
基金funded by the National Natural Science Foundation of China(52279017 and 52079063)Technological Achievements of Inner Mongolia Autonomous Region of China(2020CG0054 and 2022YFDZ0050)+1 种基金the Graduate Education Innovation Program of Inner Mongolia Autonomous Region of China(B20210188Z)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region,China(NMGIRT2313).
文摘In grassland ecosystems,the aerodynamic roughness(Z0)and frictional wind speed(u*)contribute to the aerodynamic impedance of the grassland canopy.Thus,they are often used in the studies of wind erosion and evapotranspiration.However,the effect of wind speed and grazing measures on the aerodynamic impedance of the grassland canopy has received less analysis.In this study,we monitored wind speeds at multiple heights in grazed and grazing-prohibited grasslands for 1 month in 2021,determined the transit wind speed at 2.0 m height by comparing wind speed differences at the same height in both grasslands,and divided these transit wind speeds at intervals of 2.0 m/s to analyze the effect of the transit wind speed on the relationship among Z0,u*,and wind speed within the grassland canopy.The results showed that dividing the transit wind speeds into intervals has a positive effect on the logarithmic fit of the wind speed profile.After dividing the transit wind speeds into intervals,the wind speed at 0.1 m height(V0.1)gradually decreased with the increase of Z0,exhibiting three distinct stages:a sharp change zone,a steady change zone,and a flat zone;while the overall trend of u*increased first and then decreased with the increase of V0.1.Dividing the transit wind speeds into intervals improved the fitting relationship between Z0 and V0.1 and changed their fitting functions in grazed and grazing-prohibited grasslands.According to the computational fluid dynamic results,we found that the number of tall-stature plants has a more significant effect on windproof capacity than their height.The results of this study contribute to a better understanding of the relationship between wind speed and the aerodynamic impedance of vegetation in grassland environments.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10532060 and 10562001) the Shanghai Leading Academic Discipline Project, China (Grant No Y0103)
文摘Through introducing a generalized optimal speed function to consider spatial position, slope grade and variable safe headway, the effect of slope in a single-lane highway on the traffic flow is investigated with the extended optimal speed model. The theoretical analysis and simulation results show that the flux of the whole road with the upgrade (or downgrade) increases linearly with density, saturates at a critical density, then maintains this saturated value in a certain density range and finally decreases with density. The value of saturated flux is equal to the maximum flux of the upgrade (or downgrade) without considering the slight influence of the driver's sensitivity. And the fundamental diagrams also depend on sensitivity, slope grade and slope length. The spatiotemporal pattern gives the segregation of different traffic phases caused by the rarefaction wave and the shock wave under a certain initial vehicle number. A comparison between the upgrade and the downgrade indicates that the value of saturated flux of the downgrade is larger than that of the upgrade under the same condition. This result is in accordance with the real traffic.
文摘Small rural communities located along major state or county roadways typically find most of the traffic along their main thoroughfares is pass-through rather than local traffic. Unfortunately, drivers passing through these communities often enter at high rates of speeds, which are often significantly higher than the speed limit of the local segment. Speed management in rural areas requires different considerations compared to urban areas and, within the US, rural speed management is not as advanced with little experience or guidance for agencies to draw on. This paper summarizes the results of a study that evaluated, in part, several different types of transverse pavement markings within the speed transition zones in small rural communities. Three different countermeasures were evaluated: converging chevrons, transverse lane markings, and optical speed bars.
文摘This study aimed to measure stature changes during and after walking and running at a preferred transition speed (PTS) and the recovery period, and to examine differences caused by loads imposed on the spinal column. Seven males and three females aged 22-41 years took part in this study. Subjects The subjects underwent 15 minutes of walking or running on a treadmill in a random order. Stature changes were measured during each exercise at intervals of 5 minutes and after a 20 minute standing recovery period within units of 0.01 mm. Two- way ANOVA revealed that both main factors, gait (F = 5.250, P < 0.05) and elapsed time (F = 14.409, P < 0.05), had a significant effect on stature. In the post hoc test, stature shrank with time and its loss was found to be greater in running than in walking, but recovered after both exercises. In conclusion, the spinal load increases with time during both walking and running at PTS, but is greater in running than in walking. After both exercises, spinal shrinkage shows a similar recovery process and recovers faster in walking to its pre-exercise level.
文摘In this paper,combined with the relevant speed theory and characteristics of the law,the current highway speed transition design problems are studied and analyzed.In the process of specific analysis,mainly combined with the characteristics of different types of highway speed changes and road section design requirements,this paper studies and analyzes the design methods of different types of highway speed transition section.And on this basis,according to the design principles and requirements of highway operation speed transition section,the paper summarizes the matters needing attention in the design of highway operation speed transition section,in order to provide certain reference value for relevant personnel.
基金the National Natural Science Foundation of China(Grant 11327803)the project of Youth Innovation of Science and Technology of Sichuan Province(Grant 2016TD0022)the National Challenging Plan(Grant JCKY2016212A501).
文摘The ramp wave compression experiments of iron with different thicknesses were performed on the magnetically driven ramp loading device CQ-4.Numerical simulations of this process were done with Hayes multi-phase equation of state (H-MEOS) and dynamic equations of phase transition.The calculated results of H-MEOS are in good agreement with those of shock phase transition,but are different from those under ramp wave compression.The reason for this is that the bulk modulus of the material in the Hayes model and the wave velocity are considered constant.Shock compression is a jump from the initial state to the final state,and the sound speed is related to the slope of the Rayleigh line.However,ramp compression is a continuous process,and the bulk modulus is no longer a constant but a function of pressure and temperature.Based on Mumaghan equation of state,the first-order correction of the bulk modulus on pressure in the Hayes model was carried out.The numerical results of the corrected H-MEOS agree well with those of pure iron in both ramp and shock compression phase transition experiments.The calculated results show that the relaxation time of iron is about 30 ns and the phase transition pressure is about 13 GPa.There are obvious differences between the isentropic and adiabatic process in terms of pressure-specific volume and temperature-pressure.The fluctuation of the sound speed after 13 GPa is caused by the phase transition.
文摘The synchronous acquisition system of droplet image inspection and arc electric signals were established and the droplet transition characteristics of aluminum alloys were researched in the plasma-MIG welding process.Typical droplet transition modes include globular transfer mode,short circuiting transfer mode,metastable spray transfer mode and projected transfer mode.The result indicates that MIG droplet transfer frequency and droplet transfer modes are changed by introducing the plasma arc in the plasma-MIG welding process compared with the MIG welding on the aluminum alloys,which broadens the range of welding parameters when the stable welding process proceeds.The metastable spray transfer and projected transfer mode are proved to be the most optimal modes by comparing the stability of electronic signal,droplet transition,weld appearance and weld penetration.
基金financially supported by the Natural Science Foundation of Jiangsu Province of China (Grant No.BK20200998)the National Natural Science Foundation of China (Grant Nos.52171311,52271279,and 51579130)。
文摘The estimation of ship speed in ice ridge fields is important for both route planning and prediction of emergency response time.An analytical method for estimating ship motion in first-year ice ridge is developed based on ice resistance models and ship motion equations,in which the effect of ship speed on ridge resistance is taken into account.Two model tests in level ice and one model test in ice ridge for an icebreaking multipurpose vessel are used to validate and benchmark the presented method.The predicted results including level ice resistances,net thrust and ship motion in the ice ridge field are compared with the model test data.The comparisons show that the presented method can generate reasonable results.The effects of input parameters on ship speed,penetration depth and number of necessary rams to transit ridge have been studied.Based on the calibrated model,insights into the ice resistance and the ship motion are obtained.It is found that the energy consumption of the keel obtained by integral calculation of the keel resistance at the penetration distance is with the same magnitude as the result of the maximum keel resistance multiplied by the ridge length.In addition,the effect of ridge width and keel depth on keel resistance and average transit speed is investigated.
文摘The paper analyzes the concept of Ether and substantiates the necessity of its existence as a physical reality, which arises within the framework of the concept developed by the authors of the work. The authors come to the conclusion that the existence of Ether in two different forms, plays an exceptional role in the formation of Dark Matter and Dark Energy and leads to the emergence of exotic cosmological structures and their hierarchy in energy, temporal, and spatial scale. The mechanism of the formation of physical structures before the Big Bang and their further evolution, up to the formation of worlds of galaxies and stars, is considered. The necessity of the emergence of exotic structures, such as 3 spheres of the Primary Relict, is shown, its structure and dynamic properties leading to the formation of Order from Chaos are considered. The role of the 1st and 2nd type Ether in the formation of the mechanism of transformation of cosmic energies and quantum phase transitions, in the process of the birth and evolution of the Universe is discussed. The conclusion is made about the existence of universal properties of matter, at the level of Macro and Microcosms, and a multidimensional cosmological model with an isothermal temperature distribution is constructed, leading to a discrete distribution of matter separated by transitions, by analogy with Black-and-White Holes. It is shown that the postulate of the constancy of the speed of light in any inertial system is a consequence of the principle of covariance.
基金supported by the National Natural Science Foundation of China (Grants 11372001,11672020,and 11490552)the Fundamental Research Funds for the Central Universities of China (Grant YWF-16-JCTD-A-05)
文摘The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry(PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition(POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy(TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content,suggesting an increasing competition of varicose instability against sinuous instability.
文摘<div style="text-align:justify;"> Based on the Unsteady Reynolds-Averaged Navier-Stokes (URANS) method, this paper studied the effect of the nose shape on the aerodynamic performance when the high-speed train subjected to a windbreak transition under crosswinds. The windbreak transition generated by the irregular terrain from the flat ground to the cutting. The results showed that with the height of the front window increased from Z ? 2 to Z + 2 (the dimensionless height), the side force coefficient <em>C</em><em><sub>y</sub><sup> </sup></em>and rolling moment co-efficient <em>C</em><sub><em>mx </em></sub>increased by 26% and 27% for the head car, respectively. The flow structures around the lower front window were smoother than that around the higher front window. The flow structures in the higher front window resulted in more considerable positive pressure on the windward side (WWS) and top of the nose region. </div>
基金supported by the National Natural Science Foundation of China(11372001 and 11327202)
文摘The present paper presents an experimental effort on the regeneration process of two low-speed laminar streaks in a zero-pressure-gradient laminar boundary layer. Two vertical thin wires separated by a spanwise distance of 30 mm are used to introduce disturbances of two rolls of transitional Karmain vortex street to the downstream boundary layer. Both hydrogen bubble visualization and particle image velocimetry (PIV) measurement show that two lowspeed streaks are induced through leading-edge receptivity process. As these streaks develop in the downstream, two additional low-speed streaks begin to appear outboard of the flank of the original two, together with complex dynamics of streak splitting and merging. A flow pattern of four streaks aligned along the spanwise direction occurs finally in the far downstream. It is found that besides the mechanisms of streak breakdown, the streak interaction is also an important factor characterizing the instability of low speed streaks and their regeneration process.
基金Project(52308419)supported by the National Natural Science Foundation of ChinaProject(R-5020-18)supported by the Research Grants Council,University Grants Committee of the Hong Kong Special Administrative Region(SAR),China+4 种基金Project(K-BBY1)supported by the Innovation and Technology Commission of the Hong Kong SAR Government,ChinaProject(1-W21Q)supported by the Hong Kong Polytechnic University's Postdoc Matching Fund Scheme,ChinaProject(Major Project,2021-Major-01)supported by Science and Technology Research and Development Program Project of China Railway Group LimitedProject(N2022G031)supported by the Science and Technology Research and Development Program Project of China RailwayProject(Major Project,2022-Key-22)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels.
文摘The 1990s is a key historical decade in the process of China’s on-going modernization drive.When reviewing the overall picture of the socio-economic trend and S&T development around the world during the last two decades,we may reach the conclusion that a new technological revolution is taking shape.For both the developed and the developing countries,challenges and opportunities are close at hand.In the Decision to Speed up China’s S&T Progress Jointly Issued by the CPC Central Committee and the State Council.a developmen-
文摘研究了通过热丝CVD法在施加了Ni-P/Cu复合中间过渡层的W18Cr4V高速钢衬底表面进行金刚石涂层的沉积技术以及不同压力条件对沉积出的CVD金刚石涂层质量的影响。最后通过扫描电镜分别对Cu、Ni-P以及不同反应压力下沉积的金刚石涂层的表面形貌进行了检测分析,通过XRD、拉曼光谱仪、洛氏硬度仪对金刚石涂层性能进行检测分析。结果表明:Ni-P/Cu复合中间过渡层可以明显的抑制Fe、Co的催石墨化作用。在此基础上通过沉积参数的优化,在W18Cr4V高速钢衬底表面成功沉积出高质量的CVD金刚石涂层。压力为4 kPa条件下沉积的CVD金刚石涂层较5 k Pa的金刚石颗粒晶型明显、分布致密。
文摘The 21st century promises some dramatic changes—some expected, others surprising. One of the more surprising changes is the dramatic peaking in car use and an associated increase in the world’s urban rail systems. This paper sets out what is happening with the growth of rail, especially in the traditional car dependent cities of the US and Australia, and why this is happening, particularly its relationship to car use declines. It provides new data on the plateau in the speed of urban car transportation that supports rail’s increasing role compared to cars in cities everywhere, as well as other structural, economic and cultural changes that indicate a move away from car dependent urbanism. The paper suggests that the rise of urban rail is a contributing factor in peak car use through the relative reduction in speed of traffic compared to transit, especially rail, as well as the growing value of dense, knowledge-based centers that depend on rail access for their viability and cultural attraction. Finally, the paper suggests what can be done to make rail work better based on some best practice trends in large cities and small car dependent cities.
文摘Knowledge of droplet dynamics provides the basis of predicting pressure drops, holdups and corrosion inhibitor distribution in multiphase flow. Droplet size and its distribution also determine the separation efficiency between different phases. Experimental observations were conducted for droplet impingements with different fluids, droplet sizes and velocities, and film thicknesses. The observed transition boundaries were compared with the models developed by different authors. For impingement on a deep pool surface, the Marengo and Tropea correlation for splashing does not agree with the experimental results in this study. The Bai and Gosman critical Weber number for bouncing agrees with the water results but not the oil results. Three new correlations for transition boundaries between bouncing, coalescence, jetting and splashing were proposed and compared with the experimental observations.