A l/10 scale model of reinforced concrete (R C ) frame structure was tested on the 15t-shaking table of State Key Laboratory, Tongji University The structural prototype was a 10-storey office building that was damag...A l/10 scale model of reinforced concrete (R C ) frame structure was tested on the 15t-shaking table of State Key Laboratory, Tongji University The structural prototype was a 10-storey office building that was damaged in the 1985 Mexico major earthquake[1] The original acceleration records in the earthquake were applied as the input waves in the test The dynamical test model was designed according to the general law of similarity, and the effect of the shortage of artificial quality was considered The model was carefully made of fine gravel concrete and galvanized iron wire The damage of test model is in good agreement with that of archetypal building in the experiment展开更多
The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundat...The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundation, the ductility factor could be affected by foundation compliances. The ductility factors given in the current codes are mostly assigned ignoring the effect of SSI and therefore the objective of this research is to assess the significance of SSI phenomenon on ductility factors of stack-like structures. The deformed configuration of stack-fike structures is idealized as an assemblage of beam elements considering nonlinear moment-curvature relations, while a linear sway-rocking model was implemented to model the supporting soil. Using a set of artificial records, repeated linear and nonlinear analyses were performed by gradually increasing the intensity of acceleration to a level where the first yielding of steel in linear and nonlinear analyses is observed and a level corresponding to the stack collapse in the nonlinear analysis. The difference between inelastic and elastic resistance in terms of displacement ductility factors has been quantified. The results indicate that foundation flexibility can decrease the ductility of the system and neglecting this phenomenon may lead to erroneous conclusions in the prediction of the seismic performance of flexibly-supported R/C stack-like structures.展开更多
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete (r.c.) spatial frames, because only far-fault ground motions a...The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete (r.c.) spatial frames, because only far-fault ground motions are considered in the seismic codes. Strong near-fault earth- quakes are characterized by long-duration (horizontal) pulses and high values of the ratio ~PGA of the peak value of the vertical acceleration, PGAv, to the analogous value of the horizontal acceleration, PGAH, which can become critical for girders and columns. In this work, six- and twelve-storey r.c. spatial frames are designed according to the provisions of the Italian seismic code, considering the horizontal seismic loads acting (besides the gravity loads) alone or in combination with the vertical ones. The non- linear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like itera- tive procedure. A lumped plasticity model based on the Haar-K^n~m principle is adopted to model the inelastic behaviour of the frame members. For the numerical investigation, five near-fault ground motions with high values of the acceleration ratio C^p6A are considered. Moreover, following recent seismological studies, which allow the extraction of the largest (horizontal) pulse from a near-fault ground motion, five pulse-type (horizontal) ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted. The results of the nonlinear dynamic analysis carried out on the test structures highlighted thathorizontal and vertical components of near-fault ground motions may require additional consideration in the seis- mic codes.展开更多
Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifi- cations and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, th...Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifi- cations and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the super- structure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical inves- tigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber beatings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal com- ponents of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high val- ues of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction beatings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.展开更多
In order to study the dynamic behaviour of construction,specifically seismic response of structures,as many researchers did,we have resorted to modelling methods,based on the scaled internal forces.Therefore,this rese...In order to study the dynamic behaviour of construction,specifically seismic response of structures,as many researchers did,we have resorted to modelling methods,based on the scaled internal forces.Therefore,this research includes results of an experimental investigation aimed to establish the possibility of realistic simulations of the cyclic response of small-scale models of one bay,one-storey reinforced concrete frames with masonry infills as a preliminary step for simulating the dynamic response of such structural.So,the specimens constructed were 1:9 scale R/C frames.These 1:9 scale infill frames were constructed with prototype materials and were tested in an extensive experimental sequence representing specimens of a scale near the prototype(1:3).The tested laboratory models include 1:3 scale infilled R/C frames that were built from original material such as steel,concrete and masonry infills(hollow masonry units and mortar).With the same scale,geometry and construction materials used for the construction of a 1:3 scale 5-story three dimensional building.This program consisted of 16 models,5 bare and 11 masonry infilled.all models refer to single-storey one-bay 1:9 scale as for the original structure and a one third of the scale(1:3)as for the prototype(1:3).The reinforced concrete specimens were designed in such a way as to prevent shear failure of the columns.Finally,the present paper was carried out in the Laboratory of Strength of Materials and Structures in the Department of Civil Engineering at Aristotle University of Thessaloniki.展开更多
A unit cell geometrical structure was found with the use of symmetry operations corresponding to the point group C3. Based on the symmetry of space group R3, a 3D braided geometrical structure was obtained by transfor...A unit cell geometrical structure was found with the use of symmetry operations corresponding to the point group C3. Based on the symmetry of space group R3, a 3D braided geometrical structure was obtained by transforming the unit-cell. The features corresponding to this braided structure were studied. The fiber volume percentage and variational tendencies of the material were predicted by establishing a geometric model.展开更多
基金the Sustentation Fundation of State Key Laboratory,Tongji University (970809D2)
文摘A l/10 scale model of reinforced concrete (R C ) frame structure was tested on the 15t-shaking table of State Key Laboratory, Tongji University The structural prototype was a 10-storey office building that was damaged in the 1985 Mexico major earthquake[1] The original acceleration records in the earthquake were applied as the input waves in the test The dynamical test model was designed according to the general law of similarity, and the effect of the shortage of artificial quality was considered The model was carefully made of fine gravel concrete and galvanized iron wire The damage of test model is in good agreement with that of archetypal building in the experiment
文摘The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundation, the ductility factor could be affected by foundation compliances. The ductility factors given in the current codes are mostly assigned ignoring the effect of SSI and therefore the objective of this research is to assess the significance of SSI phenomenon on ductility factors of stack-like structures. The deformed configuration of stack-fike structures is idealized as an assemblage of beam elements considering nonlinear moment-curvature relations, while a linear sway-rocking model was implemented to model the supporting soil. Using a set of artificial records, repeated linear and nonlinear analyses were performed by gradually increasing the intensity of acceleration to a level where the first yielding of steel in linear and nonlinear analyses is observed and a level corresponding to the stack collapse in the nonlinear analysis. The difference between inelastic and elastic resistance in terms of displacement ductility factors has been quantified. The results indicate that foundation flexibility can decrease the ductility of the system and neglecting this phenomenon may lead to erroneous conclusions in the prediction of the seismic performance of flexibly-supported R/C stack-like structures.
文摘The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete (r.c.) spatial frames, because only far-fault ground motions are considered in the seismic codes. Strong near-fault earth- quakes are characterized by long-duration (horizontal) pulses and high values of the ratio ~PGA of the peak value of the vertical acceleration, PGAv, to the analogous value of the horizontal acceleration, PGAH, which can become critical for girders and columns. In this work, six- and twelve-storey r.c. spatial frames are designed according to the provisions of the Italian seismic code, considering the horizontal seismic loads acting (besides the gravity loads) alone or in combination with the vertical ones. The non- linear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like itera- tive procedure. A lumped plasticity model based on the Haar-K^n~m principle is adopted to model the inelastic behaviour of the frame members. For the numerical investigation, five near-fault ground motions with high values of the acceleration ratio C^p6A are considered. Moreover, following recent seismological studies, which allow the extraction of the largest (horizontal) pulse from a near-fault ground motion, five pulse-type (horizontal) ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted. The results of the nonlinear dynamic analysis carried out on the test structures highlighted thathorizontal and vertical components of near-fault ground motions may require additional consideration in the seis- mic codes.
基金financed by Re.L.U.I.S.(Italian network of university laboratories of earthquake engineering),under the project "Convenzione D.P.C.-Re.L.U.I.S. 2014-2016,WPI,Isolation and Dissipation"
文摘Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifi- cations and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the super- structure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical inves- tigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber beatings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal com- ponents of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high val- ues of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction beatings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.
文摘In order to study the dynamic behaviour of construction,specifically seismic response of structures,as many researchers did,we have resorted to modelling methods,based on the scaled internal forces.Therefore,this research includes results of an experimental investigation aimed to establish the possibility of realistic simulations of the cyclic response of small-scale models of one bay,one-storey reinforced concrete frames with masonry infills as a preliminary step for simulating the dynamic response of such structural.So,the specimens constructed were 1:9 scale R/C frames.These 1:9 scale infill frames were constructed with prototype materials and were tested in an extensive experimental sequence representing specimens of a scale near the prototype(1:3).The tested laboratory models include 1:3 scale infilled R/C frames that were built from original material such as steel,concrete and masonry infills(hollow masonry units and mortar).With the same scale,geometry and construction materials used for the construction of a 1:3 scale 5-story three dimensional building.This program consisted of 16 models,5 bare and 11 masonry infilled.all models refer to single-storey one-bay 1:9 scale as for the original structure and a one third of the scale(1:3)as for the prototype(1:3).The reinforced concrete specimens were designed in such a way as to prevent shear failure of the columns.Finally,the present paper was carried out in the Laboratory of Strength of Materials and Structures in the Department of Civil Engineering at Aristotle University of Thessaloniki.
文摘A unit cell geometrical structure was found with the use of symmetry operations corresponding to the point group C3. Based on the symmetry of space group R3, a 3D braided geometrical structure was obtained by transforming the unit-cell. The features corresponding to this braided structure were studied. The fiber volume percentage and variational tendencies of the material were predicted by establishing a geometric model.