期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于R-L定义的分数微分对流-弥散方程有限元解
1
作者 黄权中 黄冠华 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2009年第6期695-700,共6页
分数微分对流-弥散方程(Fractional Advection-Dispersion Equation,FADE)是一种用于模拟多孔介质中溶质非费克迁移的新模型,然而由于分数微分定义的复杂性,仅能够获得特定的定解条件下FADE模型解析解.推导出了基于Riemman-Liouville(R... 分数微分对流-弥散方程(Fractional Advection-Dispersion Equation,FADE)是一种用于模拟多孔介质中溶质非费克迁移的新模型,然而由于分数微分定义的复杂性,仅能够获得特定的定解条件下FADE模型解析解.推导出了基于Riemman-Liouville(R-L)定义的FADE模型有限元解,当分数阶微分算子α=2时,该解与传统对流-弥散方程的有限元解相同.与Meerschart和Tadjeran(2004)的有限差分解及FADE模型的解析解的模拟结果相比,本文的有限元解在很大程度上能降低数值弥散现象,但当空间离散节点数目较大时(N>100),都会产生质量不守恒的现象.通过模拟结果和相关文献的分析比较得出,FADE模型的这种质量不守恒问题是由于R-L定义本身所引起的,解决该问题需要对FADE模型的数值解做进一步的研究. 展开更多
关键词 分数微分对流-弥散方程 有限元解 r—l分数微分法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部