期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于平均奖赏强化学习算法的零阶分类元系统 被引量:1
1
作者 臧兆祥 李昭 +1 位作者 王俊英 但志平 《计算机工程与应用》 CSCD 北大核心 2016年第21期14-20,48,共8页
零阶学习分类元系统ZCS(Zeroth-level Classifier System)作为一种基于遗传的机器学习技术(GeneticsBased Machine Learning),在解决多步学习问题上,已展现出应用价值。然而标准的ZCS系统采用折扣奖赏强化学习技术,难于适应更为广泛的... 零阶学习分类元系统ZCS(Zeroth-level Classifier System)作为一种基于遗传的机器学习技术(GeneticsBased Machine Learning),在解决多步学习问题上,已展现出应用价值。然而标准的ZCS系统采用折扣奖赏强化学习技术,难于适应更为广泛的应用领域。基于ZCS的现有框架,提出了一种采用平均奖赏强化学习技术(R-学习算法)的分类元系统,将ZCS中的折扣奖赏强化学习方法替换为R-学习算法,从而使ZCS一方面可应用于需要优化平均奖赏的问题领域,另一方面则可求解规模较大、需要动作长链支持的多步学习问题。实验显示,在多步学习问题中,该系统可给出满意解,且在维持动作长链,以及克服过泛化问题方面,具有更优的特性。 展开更多
关键词 平均奖赏 强化学习 r-学习算法 学习分类元系统(LCS) 零阶分类元系统(ZCS) 多步学习问题
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部