The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with eq...The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with equal amount of K_2CO_3 as acid acceptor. The structure of compound 3 was characterized by ~1H NMR, 13 C NMR, HRMS and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n with a = 5.7227(8), b = 27.924(4), c = 6.2282(7) ?, β = 101.892(11)°, V = 973.9(2) ?~3, Z = 4, T = 180.00(10) K, μ(MoKα) = 0.087 mm^(-1), Dc = 1.243 g/cm^3, 3832 reflections measured(3.648≤θ≤26.022°), 1916 unique reflections(Rint = 0.0359, Rsigma = 0.0572) used in all calculations. The final R = 0.0557(I 〉 2σ(I)) and w R = 0.1276(all data). Bioassay showed that 3 displayed excellent activity as plant growth regulator with inducing lateral root formation and enhancing primary root elongation at 0.27 mmol/L(50 ppm) in soybeen(He Feng-50). Good water solubility was found with 50 mg in 1 m L of water. Therefore, application of 3 in agriculture is more environmentally friendly due to cosolvent-free condition, and results in improved abiotic-stress tolerance by affecting the root growth. And furthermore, it can be used as a precursor to investigate the function of regulating plant root growth.展开更多
An environmental benign procedure for synthesis of 2-(N-formyl)-5-aryl/aryloxymethyl-1,3,4-thiadiazoles has been developed by reaction of 2-amino-5-aryl/aryloxymethyl-1,3,4-thiadiazoles with formic acid in PEG-400.The...An environmental benign procedure for synthesis of 2-(N-formyl)-5-aryl/aryloxymethyl-1,3,4-thiadiazoles has been developed by reaction of 2-amino-5-aryl/aryloxymethyl-1,3,4-thiadiazoles with formic acid in PEG-400.The key advantages of this protocol are the shorter reaction time,higher yields,lower cost,simple workup,and environment-friendly compared to conventional organic solvent reaction.The present method does not involve any hazardous organic solvent or catalyst.展开更多
The title compound C18H18N4OS has been synthesized by the reaction of 3-(2-hydroxy- benzyl)-4-amino-(1H)-1,2,4-triazole-5-thione with 4-isopropylbenzaldehyde in ethanol and characterized by IR, ^1H NMR spectra and...The title compound C18H18N4OS has been synthesized by the reaction of 3-(2-hydroxy- benzyl)-4-amino-(1H)-1,2,4-triazole-5-thione with 4-isopropylbenzaldehyde in ethanol and characterized by IR, ^1H NMR spectra and elemental analysis. Its structure was determined by X-ray diffraction analysis. The crystal belongs to monoclinic, space group P21/c with a = 11.605(2), b = 7.401(1), c = 20.339(2) A, β= 103.05(2)°, V= 1701.8(4) A^3, Z = 4, Mr = 338.42,μ = 0.202 mm^-1, Dc = 1.321 g/cm^3 and F(000) = 712. The structure was solved by direct methods and refined to R = 0.0428 and wR = 0.1069. Due to the intramolecular O-H…N hydrogen bond and π-π stacking interactions between the benzene (C(1)~C(6)) and triazole rings, the two planes are essentially coplanar. Their biological activities have been measured, showing this type of compound has certain antibacterial activity for Staphylococous aureus and Bacillus subtilis. Based on the quantum chemistry calculation at the RHF/6-31G level, the frontier orbitals and electrostatic potential of the title compound were also discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.2012BAD20B04)
文摘The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with equal amount of K_2CO_3 as acid acceptor. The structure of compound 3 was characterized by ~1H NMR, 13 C NMR, HRMS and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n with a = 5.7227(8), b = 27.924(4), c = 6.2282(7) ?, β = 101.892(11)°, V = 973.9(2) ?~3, Z = 4, T = 180.00(10) K, μ(MoKα) = 0.087 mm^(-1), Dc = 1.243 g/cm^3, 3832 reflections measured(3.648≤θ≤26.022°), 1916 unique reflections(Rint = 0.0359, Rsigma = 0.0572) used in all calculations. The final R = 0.0557(I 〉 2σ(I)) and w R = 0.1276(all data). Bioassay showed that 3 displayed excellent activity as plant growth regulator with inducing lateral root formation and enhancing primary root elongation at 0.27 mmol/L(50 ppm) in soybeen(He Feng-50). Good water solubility was found with 50 mg in 1 m L of water. Therefore, application of 3 in agriculture is more environmentally friendly due to cosolvent-free condition, and results in improved abiotic-stress tolerance by affecting the root growth. And furthermore, it can be used as a precursor to investigate the function of regulating plant root growth.
基金support from the Natural Science Foundation of Gansu Province(No.3ZS061- A25-019)the Scientific Research fund of Gansu Provincial Education Department(No.0601-25)
文摘An environmental benign procedure for synthesis of 2-(N-formyl)-5-aryl/aryloxymethyl-1,3,4-thiadiazoles has been developed by reaction of 2-amino-5-aryl/aryloxymethyl-1,3,4-thiadiazoles with formic acid in PEG-400.The key advantages of this protocol are the shorter reaction time,higher yields,lower cost,simple workup,and environment-friendly compared to conventional organic solvent reaction.The present method does not involve any hazardous organic solvent or catalyst.
基金This work was supported by the Natural Science Foundation of Zhejiang Province (No. M203115) and Scientific Research Fund of Zhejiang Provincial Education Department (No. 20050057)
文摘The title compound C18H18N4OS has been synthesized by the reaction of 3-(2-hydroxy- benzyl)-4-amino-(1H)-1,2,4-triazole-5-thione with 4-isopropylbenzaldehyde in ethanol and characterized by IR, ^1H NMR spectra and elemental analysis. Its structure was determined by X-ray diffraction analysis. The crystal belongs to monoclinic, space group P21/c with a = 11.605(2), b = 7.401(1), c = 20.339(2) A, β= 103.05(2)°, V= 1701.8(4) A^3, Z = 4, Mr = 338.42,μ = 0.202 mm^-1, Dc = 1.321 g/cm^3 and F(000) = 712. The structure was solved by direct methods and refined to R = 0.0428 and wR = 0.1069. Due to the intramolecular O-H…N hydrogen bond and π-π stacking interactions between the benzene (C(1)~C(6)) and triazole rings, the two planes are essentially coplanar. Their biological activities have been measured, showing this type of compound has certain antibacterial activity for Staphylococous aureus and Bacillus subtilis. Based on the quantum chemistry calculation at the RHF/6-31G level, the frontier orbitals and electrostatic potential of the title compound were also discussed.