Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electroma...Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials.展开更多
The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of th...The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of the main system coupled with absorber is significantly reduced,and the high frequency vibration completely disappears.First,through the slow-fast analysis and stability theory,it is found that the stability of the autonomous system exerts a notable regulating effect on the vibration response of the non-autonomous system.After adding the dynamic vibrator absorber,the center in the autonomous system changes to an asymptotically stable focus,consequently suppressing the vibration in the non-autonomous system.Further research reveals that the parameters of the absorber affect the real parts of the eigenvalues of the autonomous system,thereby regulating the stability of the system.Transitioning from a qualitative standpoint to a quantitative approach,a comparison of the solutions before and after the introduction of the dynamic absorber reveals that,when the grounded stiffness ratio and the mass ratio of the dynamic absorber are not equal,the high-frequency part in the analytical solution disappears.As a result,this leads to a reduction in the amplitude of the trajectory,achieving a vibration reduction effect.展开更多
Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe...Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors.展开更多
The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic pro...The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic properties of the base of the weapon,did not allow to reconcile the calculated and experimental results of the weapon casing displacement when shooting from firing rests.For the analysis of the motion of individual parts,the methods of mathematical modelling and firing experiments using a high-speed camera were chosen.Calculations show the best accord with experiment when modelling the system with 4 degrees of freedom.The oscillation of the system regarding the movement of the breech block carrier and the weapon casing was investigated under changed conditions of rate of fire,the use of a muzzle brake and different types of shock absorbers.The velocities and displacements of the weapon casing and the breech block carrier at different values of the impulse of the gases to the breech block carrier were determined.展开更多
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(...A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.展开更多
This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1...This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.展开更多
Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,p...Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.展开更多
As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address thes...As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process.展开更多
AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using ...AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.展开更多
Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement...Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement using ionization chamber is a prerequisite for absorbed dose determination for external beam radiotherapy. Calibration coefficient is expressed in terms of air kerma and absorbed dose to water traceable to Secondary Standards Dosimetry Laboratory. The objective of this work was to evaluate the level of accuracy of ionization chamber used for clinical radiotherapy beam determination. Measurement and accuracy determination were carried out according to IAEA TRS 398 protocol. Clinical farmers type ionization chamber measurement and National Reference standard from Secondary Standards Dosimetry Laboratory were both exposed to cobalt-60 beam and measurement results compared under the same environmental conditions. The accuracy level between National Reference Standard and clinical radiotherapy standard was found to be −1.92% and −2.02% for air kerma and absorbed dose to water respectively. To minimize the effect of error and maximize therapeutic dose during treatment in order to achieve required clinical outcome, calibration factor was determined for air kerma (Nk) as 49.7 mGy/nC and absorbed dose to water ND, as 52.9 mGy/nC. The study established that radiotherapy beam measurement chain is prone to errors. Hence there is a need to independently verify the accuracy of radiation dose to ensure precision of dose delivery. The errors must be accounted for during clinical planning by factoring in calibration factor to minimize the systematic errors during treatment, and thereby providing enough room to achieve ±5% dose delivery to tumor target as recommended by ICRU.展开更多
To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing ac...To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions.展开更多
An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum fr...An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum from 1 GHz to 20 GHz,which maintains more than 90%absorption from 1.5 GHz to20 GHz.Furthermore,it achieves angle stability for TE and TM polarization at oblique incident angles up to 40°and 65°,respectively.To achieve broadband absorption spectrum,we have adopted a single-layer high-impedance surface(HIS)loaded with a double-layer magnetic material(MM)structure.To further realize the RCS reduction into a lower frequency range,we have employed the scattering cancellation technology into the traditional metallic ground.Finally,we have fabricated a sample exhibiting the 10 d B RCS reduction from 1 GHz to 20 GHz with a thickness of 10 mm.Measurement and simulation results confirm that the proposed MA exhibits excellent comprehensive performance,making it suitable for many practical applications.展开更多
A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dyn...A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dynamic absorbers with different structural and control parameters as examples, the effects of third-order nonlinear coefficients, time-delay control parameters, and negative stiffness coefficients on reducing the replication of the main system were discussed. The nonlinear dynamic absorber has a very good vibration reduction effect at the resonance point of the main system and a nearby area, and when 1 increases to a certain level, the stable region of the system continues to increase. The amplitude curve of the main system of a nonlinear dynamic absorber will generate Hop bifurcation and saddle node bifurcation in the region far from the resonance point, resulting in almost periodic motion and jumping phenomena in the system. For nonlinear dynamic absorbers with determined structural parameters, time-delay feedback control can be adopted to control the amplitude of the main system. For different negative stiffness coefficients, there exists a minimum damping point for the amplitude of the main system under the determined system structural parameters and time-delay feedback control parameters.展开更多
Achieving high absorption in broad terahertz bands has long been challenging for terahertz electromagnetic wave absorbers.Recently in Nature Photonics,Xiao et al.reported the high absorption approaching the theoretica...Achieving high absorption in broad terahertz bands has long been challenging for terahertz electromagnetic wave absorbers.Recently in Nature Photonics,Xiao et al.reported the high absorption approaching the theoretical upper limit across the whole terahertz band of MXene-based terahertz absorbers and,on this basis,constructed an applicable,updated alternating current impedance matching model.展开更多
With the rapid development of information technology and electronics industry,stealth warplanes,radar stealth,electronic countermeasures,microwave communications,and other equipment have played an increasingly importa...With the rapid development of information technology and electronics industry,stealth warplanes,radar stealth,electronic countermeasures,microwave communications,and other equipment have played an increasingly important role in military defense.Therefore,the design and development of new electromagnetic wave(EMW)absorbing materials with high performance and environmental applicability that can be widely used in the microwave field has become a key issue and a major strategic challenge that needs to be urgently addressed in the modernization and upgrading of major advanced military equipment.However,how to effectively address the growing electromagnetic pollution has been an important issue that has plagued researchers in the field of EMW absorption for many years.展开更多
The optical window of low-observable platform needs to be compatible with ultra-broadband absorption,hence an optically-transparent absorber with ultra-broadband absorption is designed and analyzed in this paper.The t...The optical window of low-observable platform needs to be compatible with ultra-broadband absorption,hence an optically-transparent absorber with ultra-broadband absorption is designed and analyzed in this paper.The transparent materials indium-tin-oxide(ITO)film and polymethylmethacrylate(PMMA)are selected as the lossy layer and the supporting dielectric layer,respectively.The optically-transparent ultra-broadband absorber(OT-UBA)is composed of three layers of ITO square patterns,three layers of PMMA dielectric and a uniform ITO plane.The ITO square patterns can realize arbitrary equivalent series of RC(resistor and capacitor)circuit,so that three layers of ITO square patterns together with the ITO plane can achieve ultra-broadband absorption based on the equivalent circuit optimization.Measured results shows that the 90%-absorption bandwidth covers 2-17 GHz while the light transmittance achieves 59.6%with a total thickness of only 12.9 mm.展开更多
Cobalt nickel bimetallic oxides(NiCo_(2)O_(4))have received numerous attentions in terms of their controllable morphology,high temperature,corrosion resistance and strong electromagnetic wave(EMW)absorption capability...Cobalt nickel bimetallic oxides(NiCo_(2)O_(4))have received numerous attentions in terms of their controllable morphology,high temperature,corrosion resistance and strong electromagnetic wave(EMW)absorption capability.However,broadening the absorption bandwidth is still a huge challenge for NiCo_(2)O_(4)-based absorbers.Herein,the unique NiCo_(2)O_(4)@C core-shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy.The concentration of oxygen vacancies and morphologies of the three-dimensional(3D)cubic hollow core-shell NiCo_(2)O_(4)@C framework were effectively optimized by adjusting the calcination temperature.The specially designed 3D framework structure facilitated the multiple reflections of incident electromagnetic waves and provided rich interfaces between multiple components,generating significant interfacial polarization losses.Dipole polarizations induced by oxygen vacancies could further enhance the attenuation ability for the incident EM waves.The optimized NiCo_(2)O_(4)@C hollow microcubes exhibit superior EMW absorption capability with minimum RL(RLmin)of-84.45 dB at 8.4 GHz for the thickness of 3.0 mm.Moreover,ultrabroad effective absorption bandwidth(EAB)as large as 12.48 GHz(5.52-18 GHz)is obtained.This work is believed to illuminate the path to synthesis of high-performance cobalt nickel bimetallic oxides for EMW absorbers with excellent EMW absorption capability,especially in broadening effective absorption bandwidth.展开更多
Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel...Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.展开更多
Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent...Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.展开更多
The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The fi...The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace.展开更多
基金the Surface Project of Local Development in Science and Technology Guided by Central Government(No.2021ZYD0041)Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+2 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams).
文摘Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials.
基金Project supported by the National Natural Science Foundation of China(Nos.12172233 and U1934201)。
文摘The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of the main system coupled with absorber is significantly reduced,and the high frequency vibration completely disappears.First,through the slow-fast analysis and stability theory,it is found that the stability of the autonomous system exerts a notable regulating effect on the vibration response of the non-autonomous system.After adding the dynamic vibrator absorber,the center in the autonomous system changes to an asymptotically stable focus,consequently suppressing the vibration in the non-autonomous system.Further research reveals that the parameters of the absorber affect the real parts of the eigenvalues of the autonomous system,thereby regulating the stability of the system.Transitioning from a qualitative standpoint to a quantitative approach,a comparison of the solutions before and after the introduction of the dynamic absorber reveals that,when the grounded stiffness ratio and the mass ratio of the dynamic absorber are not equal,the high-frequency part in the analytical solution disappears.As a result,this leads to a reduction in the amplitude of the trajectory,achieving a vibration reduction effect.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.52071280 and 51972280)the Natural Science Foundation of Hebei Province,China(Nos.E2020203151 and E2022203208)+1 种基金the Research Program of the College Science&Technology of Hebei Province,China(No.ZD2020121)the Cultivation Project for Basic Research and Innovation of Yanshan University,China(No.2021LGZD016).
文摘Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors.
基金supported by the Research project VAROPS(Military autonomous and robotic assets)of the Ministry of Defence of The Czech Republicby the Specific Research Support Project(Grant No.SV22-201)financed from funds of the Ministry of Education,Youth and Sports of The Czech Republic。
文摘The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic properties of the base of the weapon,did not allow to reconcile the calculated and experimental results of the weapon casing displacement when shooting from firing rests.For the analysis of the motion of individual parts,the methods of mathematical modelling and firing experiments using a high-speed camera were chosen.Calculations show the best accord with experiment when modelling the system with 4 degrees of freedom.The oscillation of the system regarding the movement of the breech block carrier and the weapon casing was investigated under changed conditions of rate of fire,the use of a muzzle brake and different types of shock absorbers.The velocities and displacements of the weapon casing and the breech block carrier at different values of the impulse of the gases to the breech block carrier were determined.
基金Project supported by the China Post-doctoral Science Foundation(Grant No.2020M671834)the Anhui Province Post-doctoral Science Foundation,China(Grant No.2020A397).
文摘A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.
文摘This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.
基金Funded by National Natural Science Foundation of China(No.52174206)Shaanxi Provincial Department of Education Youth Innovation Team Construction Scientific Research Plan Project(No.21JP074)Shaanxi Provincial Department of Education Youth Innovation Team Scientific Research Plan Project(No.22JP047)。
文摘Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.
基金Project supported by the National Natural Science Foundation of China(Nos.12172248,12021002,12302022,and 12132010)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.22JCQNJC00780)IoT Standards and Application Key Laboratory of the Ministry of Industry and Information Technology of China(No.202306)。
文摘As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process.
基金Supported by the National Natural Science Foundation of China(No.82060181)General Project funded by the Jiangxi Provincial Department of Education(No.GJJ2200194).
文摘AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.
文摘Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement using ionization chamber is a prerequisite for absorbed dose determination for external beam radiotherapy. Calibration coefficient is expressed in terms of air kerma and absorbed dose to water traceable to Secondary Standards Dosimetry Laboratory. The objective of this work was to evaluate the level of accuracy of ionization chamber used for clinical radiotherapy beam determination. Measurement and accuracy determination were carried out according to IAEA TRS 398 protocol. Clinical farmers type ionization chamber measurement and National Reference standard from Secondary Standards Dosimetry Laboratory were both exposed to cobalt-60 beam and measurement results compared under the same environmental conditions. The accuracy level between National Reference Standard and clinical radiotherapy standard was found to be −1.92% and −2.02% for air kerma and absorbed dose to water respectively. To minimize the effect of error and maximize therapeutic dose during treatment in order to achieve required clinical outcome, calibration factor was determined for air kerma (Nk) as 49.7 mGy/nC and absorbed dose to water ND, as 52.9 mGy/nC. The study established that radiotherapy beam measurement chain is prone to errors. Hence there is a need to independently verify the accuracy of radiation dose to ensure precision of dose delivery. The errors must be accounted for during clinical planning by factoring in calibration factor to minimize the systematic errors during treatment, and thereby providing enough room to achieve ±5% dose delivery to tumor target as recommended by ICRU.
基金supported by the National Natural Science Foundation of China(No.52250287)the Outstanding Youth Science Fund Project of Shaanxi Province of China(No.2024JC-JCQN-49)。
文摘To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions.
文摘An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum from 1 GHz to 20 GHz,which maintains more than 90%absorption from 1.5 GHz to20 GHz.Furthermore,it achieves angle stability for TE and TM polarization at oblique incident angles up to 40°and 65°,respectively.To achieve broadband absorption spectrum,we have adopted a single-layer high-impedance surface(HIS)loaded with a double-layer magnetic material(MM)structure.To further realize the RCS reduction into a lower frequency range,we have employed the scattering cancellation technology into the traditional metallic ground.Finally,we have fabricated a sample exhibiting the 10 d B RCS reduction from 1 GHz to 20 GHz with a thickness of 10 mm.Measurement and simulation results confirm that the proposed MA exhibits excellent comprehensive performance,making it suitable for many practical applications.
文摘A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dynamic absorbers with different structural and control parameters as examples, the effects of third-order nonlinear coefficients, time-delay control parameters, and negative stiffness coefficients on reducing the replication of the main system were discussed. The nonlinear dynamic absorber has a very good vibration reduction effect at the resonance point of the main system and a nearby area, and when 1 increases to a certain level, the stable region of the system continues to increase. The amplitude curve of the main system of a nonlinear dynamic absorber will generate Hop bifurcation and saddle node bifurcation in the region far from the resonance point, resulting in almost periodic motion and jumping phenomena in the system. For nonlinear dynamic absorbers with determined structural parameters, time-delay feedback control can be adopted to control the amplitude of the main system. For different negative stiffness coefficients, there exists a minimum damping point for the amplitude of the main system under the determined system structural parameters and time-delay feedback control parameters.
基金the flnancial support from Overseas Excellent Young Scholars of the National Natural Science Foundation of China.
文摘Achieving high absorption in broad terahertz bands has long been challenging for terahertz electromagnetic wave absorbers.Recently in Nature Photonics,Xiao et al.reported the high absorption approaching the theoretical upper limit across the whole terahertz band of MXene-based terahertz absorbers and,on this basis,constructed an applicable,updated alternating current impedance matching model.
文摘With the rapid development of information technology and electronics industry,stealth warplanes,radar stealth,electronic countermeasures,microwave communications,and other equipment have played an increasingly important role in military defense.Therefore,the design and development of new electromagnetic wave(EMW)absorbing materials with high performance and environmental applicability that can be widely used in the microwave field has become a key issue and a major strategic challenge that needs to be urgently addressed in the modernization and upgrading of major advanced military equipment.However,how to effectively address the growing electromagnetic pollution has been an important issue that has plagued researchers in the field of EMW absorption for many years.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61901492 and 61901493)Provincial Natural Science Foundation of Hunan(Grant No.2022JJ30665)。
文摘The optical window of low-observable platform needs to be compatible with ultra-broadband absorption,hence an optically-transparent absorber with ultra-broadband absorption is designed and analyzed in this paper.The transparent materials indium-tin-oxide(ITO)film and polymethylmethacrylate(PMMA)are selected as the lossy layer and the supporting dielectric layer,respectively.The optically-transparent ultra-broadband absorber(OT-UBA)is composed of three layers of ITO square patterns,three layers of PMMA dielectric and a uniform ITO plane.The ITO square patterns can realize arbitrary equivalent series of RC(resistor and capacitor)circuit,so that three layers of ITO square patterns together with the ITO plane can achieve ultra-broadband absorption based on the equivalent circuit optimization.Measured results shows that the 90%-absorption bandwidth covers 2-17 GHz while the light transmittance achieves 59.6%with a total thickness of only 12.9 mm.
基金This work was supported by Natural Science Foundation of Shandong Province(ZR2022ME089)National Natural Science Foundation of China(52207249)Yantai Basic Research Project(2022JCYJ04).
文摘Cobalt nickel bimetallic oxides(NiCo_(2)O_(4))have received numerous attentions in terms of their controllable morphology,high temperature,corrosion resistance and strong electromagnetic wave(EMW)absorption capability.However,broadening the absorption bandwidth is still a huge challenge for NiCo_(2)O_(4)-based absorbers.Herein,the unique NiCo_(2)O_(4)@C core-shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy.The concentration of oxygen vacancies and morphologies of the three-dimensional(3D)cubic hollow core-shell NiCo_(2)O_(4)@C framework were effectively optimized by adjusting the calcination temperature.The specially designed 3D framework structure facilitated the multiple reflections of incident electromagnetic waves and provided rich interfaces between multiple components,generating significant interfacial polarization losses.Dipole polarizations induced by oxygen vacancies could further enhance the attenuation ability for the incident EM waves.The optimized NiCo_(2)O_(4)@C hollow microcubes exhibit superior EMW absorption capability with minimum RL(RLmin)of-84.45 dB at 8.4 GHz for the thickness of 3.0 mm.Moreover,ultrabroad effective absorption bandwidth(EAB)as large as 12.48 GHz(5.52-18 GHz)is obtained.This work is believed to illuminate the path to synthesis of high-performance cobalt nickel bimetallic oxides for EMW absorbers with excellent EMW absorption capability,especially in broadening effective absorption bandwidth.
基金This work is supported in part by the National Natural Science Foundation of China(U19B6003-04-01,42204132,41874130)R&D Department of CNPC(2022DQ0604-01)China Postdoctoral Science Foundation(2020M680667,2021T140661).
文摘Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.
基金support from the National Natural Science Foundation of China(61975046)。
文摘Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.
基金Project supported by the National Natural Science Foundation of China (Nos. 12122208, 11972254,and 11932015)。
文摘The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace.