In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destinatio...In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destination which is in accordance with the corresponding joint Tanner graph characterizing two different component LDPC codes used by the source and relay in ideal and non-ideal relay cooperations. The theoretical analysis and simulations show that the coded cooperation scheme obviously outperforms the coded non-cooperation one under the same code rate and decoding complex. The significant performance improvement can be virtually credited to the additional mutual exchange of the extrinsic information resulted by the LDPC code employed by the source and its counterpart used by the relay in both ideal and non-ideal cooperations.展开更多
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co...Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.展开更多
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation...The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation of a patient in the emergency department(ED),Code Crimson activation facilitates rapid decisionmaking by multi-disciplinary specialists for definitive haemorrhage control in operating theatre(OT)and/or interventional radiology(IR)suite.Once this decision has been made,there may still be various factors that lead to delay in transporting the patient from ED to OT/IR.Red Blanket protocol identifies and addresses these factors and processes which cause delay,and aims to facilitate rapid and safe transport of the haemodynamically unstable patient from ED to OT,while minimizing delay in resuscitation during the transfer.The two processes,Code Crimson and Red Blanket,complement each other.It would be ideal to merge the two processes into a single protocol rather than having two separate workflows.Introducing these quality improvement strategies and coor-dinated processes within the trauma framework of the hospitals/healthcare systems will help in further improving the multi-disciplinary care for the complex trauma patients requiring rapid and definitive haemorrhage control.展开更多
This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman codi...This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS ...The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS (personal communications systems). This paper concentrateson channel decoders that exploit the residual redundancy inherent in the enhanced variable ratecodec bitstream. This residual redundancy is quantified by modeling the parameters as first orderMarkov chains and computing the entropy rate based on the relative frequencies of transitions.Moreover, this residual redundancy can be exploited by an appropriately 'tuned' channel decoder toprovide substantial coding gain when compared with the decoders that do not exploit it. Channelcoding schemes include convolutional codes, and iteratively decoded parallel concatenatedconvolutional 'turbo' codes.展开更多
Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rat...Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.展开更多
Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list...Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.展开更多
Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of ...Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.展开更多
Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary...Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary shaped ROI without shape coding, and reserve almost arbitrary percent of background information. It also can control the relative quality of progressive decoded images. In addition, it is easy to be implemented and has low computational cost.展开更多
Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BC...Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.展开更多
An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcti...An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcting in a single process, with superior performance compared with traditional separated techniques. The concept of adaptiveness is applied not only to the source model but also to the amount of coding redundancy. In addition, an improved branch metric computing algorithm and a faster sequential searching algorithm compared with the system proposed by Grangetto were proposed. The proposed system is tested in the case of image transmission over the AWGN channel, and compared with traditional separated system in terms of packet error rate and complexity. Both hard and soft decoding were taken into account.展开更多
Noise feedback coding (NFC) has attracted renewed interest with the recent standardization of backward-compatible enhancements for ITU-T G.711 and G.722. It has also been revisited with the emergence of proprietary ...Noise feedback coding (NFC) has attracted renewed interest with the recent standardization of backward-compatible enhancements for ITU-T G.711 and G.722. It has also been revisited with the emergence of proprietary speech codecs, such as BV16, BV32, and SILK, that have structures different from CELP coding. In this article, we review NFC and describe a novel coding technique that optimally shapes coding noise in embedded pulse-code modulation (PCM) and embedded adaptive differential PCM (ADPCM). We describe how this new technique was incorporated into the recent ITU-T G.711.1, G.711 App. III, and G.722 Annex B (G.722B) speech-coding standards.展开更多
Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this pape...Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize tr...To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.展开更多
基金Supported by the Open Research Fund of National Moblie Communications Research Laboratory of Southeast Uni-versity (No. W200704)
文摘In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destination which is in accordance with the corresponding joint Tanner graph characterizing two different component LDPC codes used by the source and relay in ideal and non-ideal relay cooperations. The theoretical analysis and simulations show that the coded cooperation scheme obviously outperforms the coded non-cooperation one under the same code rate and decoding complex. The significant performance improvement can be virtually credited to the additional mutual exchange of the extrinsic information resulted by the LDPC code employed by the source and its counterpart used by the relay in both ideal and non-ideal cooperations.
基金supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
文摘The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation of a patient in the emergency department(ED),Code Crimson activation facilitates rapid decisionmaking by multi-disciplinary specialists for definitive haemorrhage control in operating theatre(OT)and/or interventional radiology(IR)suite.Once this decision has been made,there may still be various factors that lead to delay in transporting the patient from ED to OT/IR.Red Blanket protocol identifies and addresses these factors and processes which cause delay,and aims to facilitate rapid and safe transport of the haemodynamically unstable patient from ED to OT,while minimizing delay in resuscitation during the transfer.The two processes,Code Crimson and Red Blanket,complement each other.It would be ideal to merge the two processes into a single protocol rather than having two separate workflows.Introducing these quality improvement strategies and coor-dinated processes within the trauma framework of the hospitals/healthcare systems will help in further improving the multi-disciplinary care for the complex trauma patients requiring rapid and definitive haemorrhage control.
文摘This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
文摘The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS (personal communications systems). This paper concentrateson channel decoders that exploit the residual redundancy inherent in the enhanced variable ratecodec bitstream. This residual redundancy is quantified by modeling the parameters as first orderMarkov chains and computing the entropy rate based on the relative frequencies of transitions.Moreover, this residual redundancy can be exploited by an appropriately 'tuned' channel decoder toprovide substantial coding gain when compared with the decoders that do not exploit it. Channelcoding schemes include convolutional codes, and iteratively decoded parallel concatenatedconvolutional 'turbo' codes.
基金This work was supported in part by National Natural Science Foundation of China(No.61671324)the Director’s Funding from Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM201712).
文摘Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.
基金supported by the National Key R&D Program of China(2018YFB2101300)the National Science Foundation of China(61973056)
文摘Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.
基金supported by the Fundamental Research Funds for the Central Universities
文摘Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.
基金Electronic Development Fund of Ministry ofInformation Industry of China(No[2004]479)
文摘Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary shaped ROI without shape coding, and reserve almost arbitrary percent of background information. It also can control the relative quality of progressive decoded images. In addition, it is easy to be implemented and has low computational cost.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61271423)
文摘Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.
文摘An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcting in a single process, with superior performance compared with traditional separated techniques. The concept of adaptiveness is applied not only to the source model but also to the amount of coding redundancy. In addition, an improved branch metric computing algorithm and a faster sequential searching algorithm compared with the system proposed by Grangetto were proposed. The proposed system is tested in the case of image transmission over the AWGN channel, and compared with traditional separated system in terms of packet error rate and complexity. Both hard and soft decoding were taken into account.
文摘Noise feedback coding (NFC) has attracted renewed interest with the recent standardization of backward-compatible enhancements for ITU-T G.711 and G.722. It has also been revisited with the emergence of proprietary speech codecs, such as BV16, BV32, and SILK, that have structures different from CELP coding. In this article, we review NFC and describe a novel coding technique that optimally shapes coding noise in embedded pulse-code modulation (PCM) and embedded adaptive differential PCM (ADPCM). We describe how this new technique was incorporated into the recent ITU-T G.711.1, G.711 App. III, and G.722 Annex B (G.722B) speech-coding standards.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
基金supported by the National Natural Science Foundationof China (60702012)the Scientific Research Foundation for the Re-turned Overseas Chinese Scholars, State Education Ministry
文摘To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.