期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于R-MI-rényi测度的可见光与红外图像配准 被引量:11
1
作者 陈震 杨小平 +1 位作者 张聪炫 段兴旺 《电子测量与仪器学报》 CSCD 北大核心 2018年第1期1-8,共8页
针对红外与可见光图像配准的准确性与鲁棒性问题,提出一种基于R-MI-rényi测度的由粗到精红外与可见光图像配准方法。首先通过分析红外与可见光传感器的成像原理,确定红外与可见光传感器在相对位置固定时的配准变换参数;然后采用Ho... 针对红外与可见光图像配准的准确性与鲁棒性问题,提出一种基于R-MI-rényi测度的由粗到精红外与可见光图像配准方法。首先通过分析红外与可见光传感器的成像原理,确定红外与可见光传感器在相对位置固定时的配准变换参数;然后采用Hough变换检测模板图像的直线特征,并利用待配准图像对应直线段的长度和斜率确定粗配准参数;根据粗配准参数确定搜索区域与匹配窗口尺寸,利用rényi互信息与Harris角点函数相结合的R-MI-rényi匹配测度在粗配准对应区域内搜索匹配点对;最后使用RANSAC方法完成图像的精确配准并求解图像转换参数矩阵。分别选取标准测试图像集和真实测试图像集对本文方法和现有代表方法进行综合对比,实验结果表明,方法在像素误差、标准差以及时间消耗等方面均优于其他对比方法,说明方法具有较高的配准精度和效率、较好的鲁棒性,综合性能最优。 展开更多
关键词 红外图像 可见光图像 图像配准 由粗到精 r-mi-rényi测度
下载PDF
Coherence measures based on sandwiched Rényi relative entropy 被引量:1
2
作者 Jianwei Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期113-118,共6页
Coherence is a fundamental ingredient for quantum physics and a key resource for quantum information theory.Baumgratz,Cramer and Plenio established a rigorous framework(BCP framework)for quantifying coherence[Baumgrat... Coherence is a fundamental ingredient for quantum physics and a key resource for quantum information theory.Baumgratz,Cramer and Plenio established a rigorous framework(BCP framework)for quantifying coherence[Baumgratz T,Cramer M and Plenio M B Phys.Rev.Lett.113140401(2014)].In the present paper,under the BCP framework we provide two classes of coherence measures based on the sandwiched Rényi relative entropy.We also prove that we cannot get a new coherence measure f(C(·))by a function f acting on a given coherence measure C. 展开更多
关键词 quantum coherence coherence measure sandwiched Rényi relative entropy
下载PDF
Category Theoretic Properties of the A. Rényi and C. Tsallis Entropies
3
作者 György Steinbrecher Alberto Sonnino Giorgio Sonnino 《Journal of Modern Physics》 2016年第2期251-266,共16页
The problem of embedding the Tsallis, Rényi and generalized Rényi entropies in the framework of category theory and their axiomatic foundation is studied. To this end, we construct a special category MES rel... The problem of embedding the Tsallis, Rényi and generalized Rényi entropies in the framework of category theory and their axiomatic foundation is studied. To this end, we construct a special category MES related to measured spaces. We prove that both of the Rényi and Tsallis entropies can be imbedded in the formalism of category theory by proving that the same basic partition functional that appears in their definitions, as well as in the associated Lebesgue space norms, has good algebraic compatibility properties. We prove that this functional is both additive and multiplicative with respect to the direct product and the disjoint sum (the coproduct) in the category MES, so it is a natural candidate for the measure of information or uncertainty. We prove that the category MES can be extended to monoidal category, both with respect to the direct product as well as to the coproduct. The basic axioms of the original Rényi entropy theory are generalized and reformulated in the framework of category MES and we prove that these axioms foresee the existence of an universal exponent having the same values for all the objects of the category MES. In addition, this universal exponent is the parameter, which appears in the definition of the Tsallis and Rényi entropies. It is proved that in a similar manner, the partition functional that appears in the definition of the Generalized Rényi entropy is a multiplicative functional with respect to direct product and additive with respect to the disjoint sum, but its symmetry group is reduced compared to the case of classical Rényi entropy. 展开更多
关键词 Rényi Entropy Generalized Rényi Entropy measured Spaces Monoidal Category
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部