期刊文献+
共找到401篇文章
< 1 2 21 >
每页显示 20 50 100
基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究
1
作者 于宪煜 杨森 《大地测量与地球动力学》 北大核心 2025年第1期1-4,12,共5页
基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2... 基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2、7∶3、6∶4的样本比例进行计算。研究结果表明,Mask R-CNN模型识别结果准确率、召回率和F 1分数等3项指标均优于Faster R-CNN;且经过交叉验证,证明Mask R-CNN模型的性能更为稳定。 展开更多
关键词 深度学习 滑坡识别 Mask R-CNN Faster R-CNN 交叉验证
下载PDF
结合注意力机制的Mask R-CNN轮胎外观缺陷检测研究
2
作者 刘韵婷 戴佳霖 +1 位作者 高宇 谭明晓 《通信与信息技术》 2025年第1期23-27,共5页
针对我国轮胎外观缺陷检测中存在检测效率低、精度低、主观性强等问题,提出了结合注意力机制的Mask RCNN轮胎外观缺陷检测网络。首先,采用结合注意力机制的特征提取网络对轮胎表面进行特征提取,提高网络的特征提取能力以及特征图的质量... 针对我国轮胎外观缺陷检测中存在检测效率低、精度低、主观性强等问题,提出了结合注意力机制的Mask RCNN轮胎外观缺陷检测网络。首先,采用结合注意力机制的特征提取网络对轮胎表面进行特征提取,提高网络的特征提取能力以及特征图的质量;然后,通过RPN对得到的特征图进行区域候选操作,完成轮胎缺陷的检测;最后,采用Mask R-CNN网络有效地进行图像分割,并生成Mask标记。经实验验证,本文所提方法对轮胎外观缺陷检测的准确率达到了91.3%,并可以同时对胎面上较大缺陷、细小伤痕以及较浅的划痕进行检测。 展开更多
关键词 深度学习 Mask R-CNN 轮胎外观缺陷检测 注意力机制
下载PDF
基于深度学习的水下目标识别技术 被引量:2
3
作者 丁元明 徐利华 侯孟珂 《舰船科学技术》 北大核心 2024年第1期143-147,共5页
在水下复杂场景下,目标对象具有姿态不同、遮挡和背景复杂等特点,这对卷积网络的特征提取能力提出巨大挑战。Mask R-CNN算法在水下目标特征提取过程中也存在特征提取能力欠佳的问题,导致算法在水下目标检测准确性较差。因此,提出一种基... 在水下复杂场景下,目标对象具有姿态不同、遮挡和背景复杂等特点,这对卷积网络的特征提取能力提出巨大挑战。Mask R-CNN算法在水下目标特征提取过程中也存在特征提取能力欠佳的问题,导致算法在水下目标检测准确性较差。因此,提出一种基于Mask R-CNN的改进水下目标目标识别方法。首先可采用金字塔切分的通道注意力模块PAS代替采用了ResNet50的3×3卷积模块,该模块可通过对每个通道进行金字塔的切分,针对通道切分完成后所得出来的通道特征图上的空间信息来进行不用的尺度特征层提取;同时通过采用另一种更加安全稳定和高效的ECANEt通道注意力模块代替PAS模块中的SENet通道注意力模,对多维度的通道注意力权重进行特征重标定;最后对特征金字塔FPN的网络结构进行改进,加强不同特征层之间的信息融合。根据不同场景下进行的实验对比,改进后的网络能够提高水下目标识别的准确率,平均检测精度可达91.3%。本文所提出的改进Mask RCNN网络模型,能够适应水下复杂多变的场景,为水下目标的识别提供理论依据与技术方案。 展开更多
关键词 水下目标识别 Mask R-CNN 深度学习
下载PDF
基于空间注意力机制的Mask R-CNN致密储层岩石薄片图像鉴定
4
作者 李春生 刘涛 +7 位作者 刘宗堡 张可佳 刘芳 刘晓文 田梦晴 白玉磊 尹靖淞 卢羿州 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期24-32,共9页
针对陆相致密储层岩石薄片鉴定识别难、制片成本高、时间消耗长和人为主观强等难题,选取鄂尔多斯盆地临兴区块上古生界和松辽盆地三肇凹陷扶余油层为靶区,提出一种基于深度学习的致密油储层岩石薄片人工智能鉴定方法,引入图像预处理技... 针对陆相致密储层岩石薄片鉴定识别难、制片成本高、时间消耗长和人为主观强等难题,选取鄂尔多斯盆地临兴区块上古生界和松辽盆地三肇凹陷扶余油层为靶区,提出一种基于深度学习的致密油储层岩石薄片人工智能鉴定方法,引入图像预处理技术去除岩石薄片图像噪声并统一图像像素大小,构建空间几何增广机制,基于空间注意力机制改进Mask R-CNN算法,并将上述方法应用于实例靶区进行有效性验证。结果表明:图像预处理技术能够在保障图像特征的前提下,有效提高图像质量,减少噪声干扰;空间几何图像增广机制能够在在一定程度上增加可用样本的数量;基于空间注意力机制的Mask R-CNN算法可以同时完成复杂岩石薄片成分的分割与智能识别工作,分割精度在不同数据集情况下的平均精度为89.2%,整体识别准确率为93%,适用于致密油储层岩石薄片特征鉴定。 展开更多
关键词 致密储层 岩石薄片 深度学习 Mask R-CNN算法 分割与识别
下载PDF
适应遮挡条件下奶油生菜的实例分割方法研究
5
作者 韩江枫 杨意 +3 位作者 郑鸿燊 刘厚诚 琚俊 辜松 《农机化研究》 北大核心 2024年第8期80-84,共5页
利用机器视觉技术测量生菜的表型参数对探索生菜的生长规律有着非常重要的意义,而构建生菜个体的识别及轮廓分割算法是实现表型参数精准测量的重要前提;但是,在生菜培育至采收期,俯视图下生菜个体间叶片相互重叠遮挡,对个体识别和轮廓... 利用机器视觉技术测量生菜的表型参数对探索生菜的生长规律有着非常重要的意义,而构建生菜个体的识别及轮廓分割算法是实现表型参数精准测量的重要前提;但是,在生菜培育至采收期,俯视图下生菜个体间叶片相互重叠遮挡,对个体识别和轮廓分割造成很大的阻碍。为此,改进了Mask R-CNN神经网络模型,掩膜分支采用class-agnostic模式,以ResNeXt50联合FPN替换原有的卷积主干,实现了遮挡条件下奶油生菜的个体识别和轮廓分割。为了对改进模型的分割精度进行验证分析,采用平均精度AP75和平均检测耗时作为评价指标,与原始Mask R-CNN、DeepMask、MNC分割模型在不同程度遮挡测试集上设置对比试验。结果表明:改进模型的平均精度达到98.7%,相比原模型提高了约4%,且在重度遮挡测试集上依然能够保持良好的分割精度。研究结果可为遮挡条件下植物叶片的识别和分割提供算法参考,也可为奶油生菜的表型参数提取提供技术支持。 展开更多
关键词 奶油生菜 轮廓分割 遮挡 Mask R-CNN 深度学习 图像处理
下载PDF
基于Mask R-CNN和迁移学习的无人机遥感影像杉木单木树冠提取 被引量:2
6
作者 谢运鸿 孙钊 +3 位作者 丁志丹 罗蜜 李芸 孙玉军 《北京林业大学学报》 CAS CSCD 北大核心 2024年第3期153-166,共14页
【目的】利用无人机遥感影像对树冠进行自动化提取,获取高精度树冠信息。【方法】该研究提出一种基于Mask RCNN和迁移学习的无人机影像单木树冠提取方法。首先,选用在Faster R-CNN基础上改进优化的Mask R-CNN实例分割模型,特征提取网络... 【目的】利用无人机遥感影像对树冠进行自动化提取,获取高精度树冠信息。【方法】该研究提出一种基于Mask RCNN和迁移学习的无人机影像单木树冠提取方法。首先,选用在Faster R-CNN基础上改进优化的Mask R-CNN实例分割模型,特征提取网络在ResNet50残差网络和ResNet101残差网络二者间选取最优。其次,引入迁移学习与Mask RCNN一起训练,联合迁移学习的导向作用降低训练时间,提高训练精度。【结果】Mask R-CNN模型的总体精度为93.59%,用户精度为65.46%,F1分数为76.05%,平均精度均值为0.31;载入迁移学习后的Mask R-CNN模型在同等训练条件下比原模型的用户精度提升29.53%,F1分数提升19.63%,平均精度均值提升0.21;分别以ResNet50和ResNet101为特征提取网络的Mask R-CNN模型中,ResNet50+Mask R-CNN模型的总体精度、用户精度、F1分数、平均精度均值各为96.94%、95.57%、96.17%、0.54,ResNet101+Mask R-CNN模型的总体精度、用户精度、F1分数、平均精度均值各为96.20%、94.41%、95.19%、0.49;其中载入迁移学习的ResNet50+Mask R-CNN模型在预测东西冠幅、南北冠幅、树冠面积与样方郁闭度的预测决定系数分别为0.87、0.84、0.93和0.83。【结论】本研究提出的基于Mask R-CNN和迁移学习的方法得到了较为精准的树冠参数结果,为无人机遥感影像评估树木资源提供了一种快速高效的解决方案。 展开更多
关键词 无人机 遥感影像 深度学习 Mask R-CNN 迁移学习 树冠提取
下载PDF
基于改进Cascade R-CNN算法的船舶目标检测方法 被引量:1
7
作者 杨镇宇 石刘 《舰船科学技术》 北大核心 2024年第6期144-149,共6页
为了解决实际场景下船舶目标检测精度低的问题,本文在Cascade R-CNN算法的基础上,提出一种船舶目标检测方法 Boat R-CNN。Boat R-CNN使用带自注意力机制的Swin-Transformer Tiny网络提取图像特征,使用Soft-NMS非极大值抑制方法提升候选... 为了解决实际场景下船舶目标检测精度低的问题,本文在Cascade R-CNN算法的基础上,提出一种船舶目标检测方法 Boat R-CNN。Boat R-CNN使用带自注意力机制的Swin-Transformer Tiny网络提取图像特征,使用Soft-NMS非极大值抑制方法提升候选框过滤精度,使用Smooth_L1损失函数加速模型收敛并减少梯度爆炸情况,使用CIOU边界框回归损失提高候选框回归质量,并针对船舶目标的形状特征优化锚框的长宽比,提高锚框的生成质量。实验结果表明,Boat R-CNN算法的精度相比原版Cascade R-CNN算法提高了21.8%,相比主流Faster R-CNN算法提高了30.3%,有效提升了实际场景下的船舶目标检测精度。 展开更多
关键词 船舶 目标检测 深度学习 Cascade R-CNN Swin Transformer
下载PDF
融合改进Transformer的车辆部件检测方法
8
作者 翟永杰 李佳蔚 +2 位作者 陈年昊 王乾铭 王新颖 《图学学报》 CSCD 北大核心 2024年第5期930-940,共11页
为有效解决车辆部件检测中模型由于特征提取不充分以及候选框未能充分利用导致的错检、漏检等问题,提出了融合改进Transformer的车辆部件检测方法。首先将多头自注意力和双层路由注意力结合,提出了关键区域多头自注意力(KR-MHSA);然后... 为有效解决车辆部件检测中模型由于特征提取不充分以及候选框未能充分利用导致的错检、漏检等问题,提出了融合改进Transformer的车辆部件检测方法。首先将多头自注意力和双层路由注意力结合,提出了关键区域多头自注意力(KR-MHSA);然后将基线模型(Mask R-CNN)中ResNet的最后一层与KR-MHSA进行残差融合,提升了模型的基础特征提取能力;最后通过改进的Swin Transformer对模型生成的候选框进行特征学习,使模型更好地理解不同候选框之间的差异和相似性。实验在构建的59类车辆部件数据集上进行,对比实验结果证明,本文模型在检测和分割效果上均优于其他先进实例分割模型。相较于基线模型,检测准确率提高了4.47%,分割准确率提高了4.4%,有效地解决了车辆部件检测中特征提取不足和候选框未充分利用导致的错检、漏检和实例分割精度较低的问题,使保险公司能够更准确、更高效地更换损坏的部件,提高索赔效率。 展开更多
关键词 车辆部件 深度学习 实例分割 Mask R-CNN 特征提取 多头自注意力 双层路由注意力
下载PDF
深度学习滑坡识别算法中样本不平衡问题的研究 被引量:1
9
作者 王丽霞 喜文飞 +4 位作者 史正涛 赵子龙 钱堂慧 赵磊 马奕捷 《测绘通报》 CSCD 北大核心 2024年第5期12-18,共7页
山体滑坡是一种常见的地质灾害,一旦发生会给自然生态系统和人类造成重大财产损失和人员伤亡,如何快速准确获取滑坡信息对防灾减灾至关重要。传统的深度学习方法对滑坡样本质量依赖性大,但现有的样本质量参差不齐,极少考虑滑坡样本不平... 山体滑坡是一种常见的地质灾害,一旦发生会给自然生态系统和人类造成重大财产损失和人员伤亡,如何快速准确获取滑坡信息对防灾减灾至关重要。传统的深度学习方法对滑坡样本质量依赖性大,但现有的样本质量参差不齐,极少考虑滑坡样本不平衡问题对深度学习模型性能的影响。针对如何通过改善样本质量提升模型精度的问题,本文从样本质量出发,提出了一种基于多源不平衡样本的Faster R-CNN滑坡目标检测方法,通过对多种不平衡样本的集成训练,研究不同样本对模型综合性能的影响。结果表明:①在困难样本不平衡下模型的准确率为85.16%,F1值为0.69,精确率为56.96%,召回率为86.58%、漏检率为0.33,通过强化样本质量后准确率提升2.04%,精确率提升4.29%,召回率提升1.71%,漏检率降低0.04;②在正负样本不平衡下模型准确率为96.03%,F1值为0.78,精确率为64.50%,召回率为97.15%、漏检率为0.09,通过增加困难样本参与训练后,准确率下降8.45%,精确率下降6.93%,召回率下降7.25%,漏检率提升0.18。困难样本对模型综合性能影响更大,通过提高这部分样本质量可以提升模型检测精度。因此,本文提出的方法为解决深度学习中滑坡数据样本不平衡问题提供了参考。 展开更多
关键词 深度学习 滑坡检测 Faster R-CNN 不平衡样本 GF-2遥感影像
下载PDF
基于视觉技术和Mask R-CNN的法兰盘表面缺陷检测研究
10
作者 赵祺 刘国宁 +1 位作者 吕展博 张峰源 《机床与液压》 北大核心 2024年第21期140-148,共9页
在法兰表面缺陷检测任务中,为了对缺陷进行精准定位和分类,根据缺陷位置和类别综合判定法兰是否符合特定标准的质量要求,结合缺陷特征和相应标准,提出一种基于视觉技术和Mask R-CNN的法兰表面缺陷检测与评估方法。依据法兰的适用原则和... 在法兰表面缺陷检测任务中,为了对缺陷进行精准定位和分类,根据缺陷位置和类别综合判定法兰是否符合特定标准的质量要求,结合缺陷特征和相应标准,提出一种基于视觉技术和Mask R-CNN的法兰表面缺陷检测与评估方法。依据法兰的适用原则和缺陷判定标准对法兰表面进行区域划分。通过搭建图像采集平台,采集图像并对其进行预处理操作后添加至网络训练集中。采用Mask R-CNN作为缺陷检测网络的基本框架,结合法兰表面缺陷特点改进Mask R-CNN骨干网络和颈部网络,并对网络性能进行验证。最后,根据检测标准,使用边缘检测算法对模型检测结果进行复检。结果表明:改进后的方法能够实现精确的定位并进行质量评估,满足法兰表面缺陷检测的要求。 展开更多
关键词 缺陷检测 机器视觉 Mask R-CNN 深度学习
下载PDF
目标检测算法在滑坡识别中的应用
11
作者 唐烽顺 郝利娜 +1 位作者 宋雨洋 武德宏 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期229-234,共6页
基于目视解译的滑坡数据集选取两大类(6个)目标检测算法构建滑坡自动识别模型,以四川省阿坝州作为研究区进行滑坡自动识别.基于高分辨率卫星影像构建包含3 120个样本的滑坡样本数据集;选取4种一阶段检测算法YOLOv5(s、 m、 l、 x)与两... 基于目视解译的滑坡数据集选取两大类(6个)目标检测算法构建滑坡自动识别模型,以四川省阿坝州作为研究区进行滑坡自动识别.基于高分辨率卫星影像构建包含3 120个样本的滑坡样本数据集;选取4种一阶段检测算法YOLOv5(s、 m、 l、 x)与两种二阶段检测算法Faster R-CNN(VGG16和ResNet-50)分别构建滑坡自动识别模型;为探究样本数量对模型识别精度的影响,将样本数据集总数分为1 000、 2 000和3 000,通过滑坡测试样本对识别结果进行评价.结果表明,基于目标检测的两类滑坡识别模型中,一阶段YOLOv5模型比二阶段Faster R-CNN模型更适用于滑坡识别;样本数对滑坡识别模型的性能具有一定影响.在较少样本的情况下,选择YOLOv5s模型能够获得较高的识别精度,随着样本数的增加,使用YOLOv5m模型可以获得更好的滑坡识别效果. 展开更多
关键词 滑坡 深度学习 YOLOv5 Faster R-CNN
下载PDF
基于eBPF和ConvLSTM的5G-R网络安全审计系统研究 被引量:1
12
作者 陈律 李辉 刘畅 《铁道标准设计》 北大核心 2024年第4期203-210,共8页
在铁路5G专网快速发展的背景下,铁路网络信息安全关系到铁路运行安全等方面。但当前成熟的铁路网络安全设备多是针对可能存在的非法入侵、外网干预等外部安全隐患,对于内部使用不当或通信异常带来的安全问题,还未有系统性的检测方法。因... 在铁路5G专网快速发展的背景下,铁路网络信息安全关系到铁路运行安全等方面。但当前成熟的铁路网络安全设备多是针对可能存在的非法入侵、外网干预等外部安全隐患,对于内部使用不当或通信异常带来的安全问题,还未有系统性的检测方法。因此,提出一种可同时进行网络内外异常检测、集流量抓取和数据分析为一体的实时性较强的网络安全审计系统成为迫切需要。设计从网络安全审计的三大关键技术出发,分别对应本系统的数据采集、数据解析、流量识别三个模块,并说明系统在网络中部署的环境与位置。具体运用了eBPF技术抓取网络流量数据包,利用深度学习的数据预处理方法提取其中特征信息,并导入已训练好的ConvLSTM模型中进行预测,最终判断是否出现异常流量。通过两个数据集的实验验证并与传统算法进行对比,此网络安全审计系统针对外部攻击流量的预测准确率可以达到0.97,针对内部通信异常预测准确率为0.96,实现了对外部或内部因素导致的网络流量异常问题的监测与排查,以便快速反应采取进一步措施。针对5G-R场景进行的网络安全审计系统设计和研究可以为未来铁路面临的网络安全挑战提供技术支撑和帮助。 展开更多
关键词 铁路通信 5G-R 网络安全审计 eBPF 深度学习 ConvLSTM
下载PDF
基于深度学习的实例分割边界框回归方法研究
13
作者 刘桂霞 吴彦博 +1 位作者 李文辉 王天昊 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第3期474-479,614,共7页
针对实例分割任务中图像中可能出现相互遮挡或边缘模糊导致边界框定位不准确的问题,本文提出了一种新的边界框回归损失函数。将边界框位置预测转化为估计定位置信度随位置变化的概率分布;考虑坐标点间存在联系,提出一种面积差计算方法;... 针对实例分割任务中图像中可能出现相互遮挡或边缘模糊导致边界框定位不准确的问题,本文提出了一种新的边界框回归损失函数。将边界框位置预测转化为估计定位置信度随位置变化的概率分布;考虑坐标点间存在联系,提出一种面积差计算方法;为了证明此方法可以很好地应用于先检测后分割的实例分割模型,本文使用Mask R-CNN作为基线。实验结果表明:在边界框检测及实例分割任务中,本文方法的精度优于其他方法,对于小物体的检测与分割效果更显著,训练和评估速度也更快。 展开更多
关键词 计算机视觉 深度学习 卷积神经网络 实例分割 Mask R-CNN 边界框回归 KL散度 高斯分布
下载PDF
基于改进Mask R-CNN模型的宫颈细胞分割
14
作者 李静 张悦 +1 位作者 乔亚鑫 宁春玉 《长春理工大学学报(自然科学版)》 2024年第2期107-113,共7页
在宫颈细胞分割过程中,原始Mask R-CNN模型采用ResNet50和FPN作为特征提取网络,尽管模型分割效果良好,但仍存在分割速度慢且边缘分割效果欠佳等问题,为此,提出了一种改进Mask R-CNN模型。首先,该模型采用轻量化网络MobileNet V2作为特... 在宫颈细胞分割过程中,原始Mask R-CNN模型采用ResNet50和FPN作为特征提取网络,尽管模型分割效果良好,但仍存在分割速度慢且边缘分割效果欠佳等问题,为此,提出了一种改进Mask R-CNN模型。首先,该模型采用轻量化网络MobileNet V2作为特征提取模块,大幅度降低模型参数量,为图像的实时分割提供了可能。其次,该模型在特征提取网络中融入了注意力模块,通过自适应特征优化功能,最大限度获取底层信息。最后,模型在掩码生成阶段采用跳跃连接的方式,有效融合各尺度信息,提升网络信息获取能力。实验结果表明,改进模型将宫颈细胞核的分割速度提升了50%左右、分割精度提升了7%。 展开更多
关键词 细胞分割 深度学习 MaskR-CNN 注意力机制
下载PDF
基于热成像的锂离子电池智能故障定位技术
15
作者 田璐羽 董朝宇 +3 位作者 穆云飞 余晓丹 肖迁 贾宏杰 《高电压技术》 EI CAS CSCD 北大核心 2024年第6期2502-2510,共9页
随着新能源发电、电动汽车等的发展,目前对储能技术的要求不断提高。其中,锂离子电池因其环境友好、能量密度高、使用寿命长等优点被广泛应用于各类储能系统中。为锂离子电池配备合理的热故障诊断可以避免热失控现象的发生,确保电池安... 随着新能源发电、电动汽车等的发展,目前对储能技术的要求不断提高。其中,锂离子电池因其环境友好、能量密度高、使用寿命长等优点被广泛应用于各类储能系统中。为锂离子电池配备合理的热故障诊断可以避免热失控现象的发生,确保电池安全可靠运行。该研究提出了锂离子电池智能感知(lithium-ionbatteryintelligent perception,LBIP)来建立锂离子电池的热故障诊断模型。LBIP包括特征提取网络、区域提交网络(regionproposal network,RPN)、感兴趣区域对齐(region of interest align,ROIAlign)以及Mask分支。选择Ansys Fluent软件进行锂离子电池的有限元仿真。LBIP处理电池表面的热成像图像,对问题电池进行识别,并进行问题电池的定位与分割。结果表明,故障电池的识别准确率可达95%。 展开更多
关键词 锂离子电池 热故障诊断 Mask R-CNN 深度学习 实例分割
下载PDF
基于改进Faster R-CNN的变电站设备外部缺陷检测 被引量:1
16
作者 张铭泉 邢福德 刘冬 《智能系统学报》 CSCD 北大核心 2024年第2期290-298,共9页
针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-C... 针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-CNN(faster region-based convolutional network)算法,但其对小目标物体和设备渗漏油的检测精度仍有提升空间,为此设计一种基于Faster R-CNN的改进算法。改进算法通过对输入图像进行数据增强,在网络中添加SPP(spatial pyramid pooling)结构以及改进特征融合方式,对分类以及边界框回归损失函数进行改进的方式来提高缺陷的检测精度。与原Faster R-CNN算法进行对比,改进算法在变电站设备缺陷目标检测数据集的检测结果中AP(average precision)(0.5∶0.95)提高了2.7个百分点,AP(0.5)提高了4.3个百分点,对小目标物体的检测精度也提高了1.8个百分点,试验结果验证了该方法的有效性。 展开更多
关键词 变电站设备外部缺陷 深度学习 目标检测 卷积神经网络 Faster R-CNN 特征提取 特征融合金字塔结构 损失函数
下载PDF
基于改进Faster R-CNN的肺结核病原体检测
17
作者 鞠瑞文 孙振 李庆党 《计算机系统应用》 2024年第11期121-130,共10页
本文提出一种基于Faster R-CNN的肺结核病原体检测方法,以更高的准确率和更低的漏检率检测肺结核.首先,通过Mosaic数据增强方法对数据集进行扩充,提高模型泛化能力,同时引入K-means聚类算法,对所用数据集重新聚类来生成对的锚点初始候... 本文提出一种基于Faster R-CNN的肺结核病原体检测方法,以更高的准确率和更低的漏检率检测肺结核.首先,通过Mosaic数据增强方法对数据集进行扩充,提高模型泛化能力,同时引入K-means聚类算法,对所用数据集重新聚类来生成对的锚点初始候选框大小.其次,将Faster R-CNN中的原始特征提取网络替换为Res2Net,并将其卷积核全部替换为空洞卷积,在与原卷积相比参数量不变的情况下,增大了感受野.再者,引入改进后的GC-FPN模块,使模型在轻量化的同时更好的关注小目标信息.最后,引入ROI Align,解决候选框和初始回归位置存在偏差的问题.实验结果表明,在公开数据集上,改进的Faster R-CNN模型与原本的Faster R-CNN算法相比,准确率提高了2.7%,召回率提升了1.4%,该算法不仅在结核图像数据集上得到了验证,而且具有较高的准确率. 展开更多
关键词 肺结核 深度学习 目标检测 Faster R-CNN
下载PDF
基于立体R-CNN的自动驾驶中的路障识别与定位 被引量:1
18
作者 刘启 卢林 朱兆旻 《时代汽车》 2024年第8期178-180,共3页
基于深度学习的自动驾驶技术是目前最为先进和主流的自动驾驶技术之一,它通过应用深度学习算法来实现对驾驶场景的感知、路径规划、行为决策和运动控制,极大地提高了自动驾驶汽车的安全性和可靠性。文章提出了一种新型的立体区域卷积神... 基于深度学习的自动驾驶技术是目前最为先进和主流的自动驾驶技术之一,它通过应用深度学习算法来实现对驾驶场景的感知、路径规划、行为决策和运动控制,极大地提高了自动驾驶汽车的安全性和可靠性。文章提出了一种新型的立体区域卷积神经网络模型对自动驾驶中的路障的识别与定位进行研究。结果显示,文章提出的方法在图像识别精度和速度上要优于Mono3D和VeloFCN等其它模型。 展开更多
关键词 深度学习 R-CNN 自动驾驶 路障识别与定位
下载PDF
基于卷积神经网络的GNSSGR海面风速反演方法研究
19
作者 陈趁新 杨志 +1 位作者 王晓宇 白照广 《先进小卫星技术(中英文)》 2024年第4期8-13,共6页
传统基于地球物理模型函数(geophysical model function,GMF)的全球导航卫星系统反射测量(global navigation satellite system reflectometry,GNSS-R)海面风速反演存在特征提取准确度低、模型复杂度高等问题。针对上述问题,提出了一种... 传统基于地球物理模型函数(geophysical model function,GMF)的全球导航卫星系统反射测量(global navigation satellite system reflectometry,GNSS-R)海面风速反演存在特征提取准确度低、模型复杂度高等问题。针对上述问题,提出了一种基于卷积神经网络的GNSS-R海面风速反演方法。通过构建卷积模块自动提取时延-多普勒映射图像(delay-Doppler map,DDM)中的观测特征,特征融合模块将提取的特征与辅助特征关联,全连接模块将上述特征向量逐级映射到海面风速。以“捕风一号”卫星观测数据为例验证了上述方法的有效性,较传统GMF方法,风速反演精度在均方根误差(root mean square error,RMSE)和平均偏差(mean bias error,MBE)上分别降低了0.51 m/s和0.19 m/s,反演效果分别提升了21%和16%。试验结果表明:该方法能够有针对性地自动提取DDM特征,有效提高特征提取的精度,同时显著降低模型的复杂度。本研究为同类卫星各种地表参数反演提供了新思路。 展开更多
关键词 深度学习 GNSS-R “捕风一号”卫星 海面风速反演 卷积神经网络
下载PDF
农业灯诱害虫图像识别的模型算法研究
20
作者 邱钊宏 郑康诚 +2 位作者 李嘉明 董润立 王建斌 《河南科技》 2024年第10期27-31,共5页
【目的】采用Faster R-CNN算法对样本数量少且分布不均衡的28类农田害虫数据集进行研究。【方法】首先,分析不同输入图像尺寸对训练模型性能的影响,确定了输入图像尺寸5472×3648的25%作为优选;其次,为了避免部分类别害虫因数据过... 【目的】采用Faster R-CNN算法对样本数量少且分布不均衡的28类农田害虫数据集进行研究。【方法】首先,分析不同输入图像尺寸对训练模型性能的影响,确定了输入图像尺寸5472×3648的25%作为优选;其次,为了避免部分类别害虫因数据过少而导致的过拟合问题,采用Mixup和mosaic方法增加数据多样性,并使用迁移学习提高模型性能。【结果】这些方法可以有效地提高模型的泛化性和鲁棒性,除了9与10这两类害虫相似度非常高导致AP值较低外,其余害虫识别的AP平均值为92.07%。【结论】通过测试数据检验模型的泛化性,发现模型表现良好但仍有改进空间。 展开更多
关键词 害虫识别 数据增强 Faster R-CNN 深度学习 目标检测
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部