With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitut...With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitute for R245fa in heat pump systems.In this study,the performance and economic analysis of heat pump systems with R245fa and R1233zd(E)as refrigerants are carried out.The results show that the total cost of R1233zd(E)system is more than 10%higher than that of R245fa system under the same heating load.With the increase of condensation temperature,the heating capacity of both systems decreases,and with the increase of evaporation temperature,the heating capacity increases.The variation trend of coefficient of performance(COP)of the two systems is similar to that of heating capacity.Under the same operating conditions,the COP of R1233zd(E)system is 19.2%higher than that of R245fa system,and the volumetric heat capacity of R1233zd(E)is 9.0%–13.9%lower than that of R245fa.The economic analysis results show that the investment cost of R1233zd(E)system is low under the same heat load.展开更多
In this paper,the entrainment ratio,pump work,heat loads of heat exchangers and COPthermal were theoretically evaluated for a solar-driven ejector-vapor compression hybrid refrigeration system with R1233zd(E)and R1336...In this paper,the entrainment ratio,pump work,heat loads of heat exchangers and COPthermal were theoretically evaluated for a solar-driven ejector-vapor compression hybrid refrigeration system with R1233zd(E)and R1336mzz(Z)as the working fluids.The evaluation of the utilization potentials of R1233zd(E)and R1336mzz(Z)was presented by comparing the system performance with that of R245fa,a commonly used refrigerant in the ejector system.The results indicated that the systems with R1233zd(E)and R1336mzz(Z)had a higher entrainment ratio and lower pump work.The pump works when using R1233zd(E)and R1336mzz(Z)can be up to 14.59%and 38.05%lower than those of R245fa,respectively.Meanwhile,the system showed the highest COPthermal utilizing R1233zd(E)followed by that of R245fa,with the R1336mzz(Z)system having the lowest value.The differences between R1233zd(E)and R1336mzz(Z)systems,R1233zd(E)and R245fa systems were 4.33%and 2.0%,respectively.This paper was expected to provide a good reference for the utilizing prospect of R1233zd(E)and R1336mzz(Z)in ejector refrigeration systems.展开更多
基金supported by theKorea Institute of Energy Technology Evaluationand Planning (KETEP) grant funded by the Korean Government (MOTIE) (No. 20202020900060,The development and application of operational technology in smart farm utilizing waste heat fromparticulates reduced smokestack).
文摘With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitute for R245fa in heat pump systems.In this study,the performance and economic analysis of heat pump systems with R245fa and R1233zd(E)as refrigerants are carried out.The results show that the total cost of R1233zd(E)system is more than 10%higher than that of R245fa system under the same heating load.With the increase of condensation temperature,the heating capacity of both systems decreases,and with the increase of evaporation temperature,the heating capacity increases.The variation trend of coefficient of performance(COP)of the two systems is similar to that of heating capacity.Under the same operating conditions,the COP of R1233zd(E)system is 19.2%higher than that of R245fa system,and the volumetric heat capacity of R1233zd(E)is 9.0%–13.9%lower than that of R245fa.The economic analysis results show that the investment cost of R1233zd(E)system is low under the same heat load.
基金This work was financially sponsored by National Natural Science Foundation of China(No.51906216)Zhejiang Provincial Natural Science Foundation of China(No.LQ18E060001)European Union project H2020-MSCA-RISE 778104.
文摘In this paper,the entrainment ratio,pump work,heat loads of heat exchangers and COPthermal were theoretically evaluated for a solar-driven ejector-vapor compression hybrid refrigeration system with R1233zd(E)and R1336mzz(Z)as the working fluids.The evaluation of the utilization potentials of R1233zd(E)and R1336mzz(Z)was presented by comparing the system performance with that of R245fa,a commonly used refrigerant in the ejector system.The results indicated that the systems with R1233zd(E)and R1336mzz(Z)had a higher entrainment ratio and lower pump work.The pump works when using R1233zd(E)and R1336mzz(Z)can be up to 14.59%and 38.05%lower than those of R245fa,respectively.Meanwhile,the system showed the highest COPthermal utilizing R1233zd(E)followed by that of R245fa,with the R1336mzz(Z)system having the lowest value.The differences between R1233zd(E)and R1336mzz(Z)systems,R1233zd(E)and R245fa systems were 4.33%and 2.0%,respectively.This paper was expected to provide a good reference for the utilizing prospect of R1233zd(E)and R1336mzz(Z)in ejector refrigeration systems.