期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage
1
作者 Guoqiang Zhang Jianan Lu +7 位作者 Jingwei Zheng Shuhao Mei Huaming Li Xiaotao Zhang An Ping Shiqi Gao Yuanjian Fang Jun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期161-170,共10页
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t... Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage. 展开更多
关键词 intracerebral hemorrhage MACROPHAGE microglia neuroinflammation PHAGOCYTOSIS PI3K/AKT/mTOR signaling pathway Spi1 TRANSCRIPTOMICS
下载PDF
Argatroban promotes recovery of spinal cord injury by inhibiting the PAR1/JAK2/STAT3 signaling pathway
2
作者 Chenxi Zhao Tiangang Zhou +9 位作者 Ming Li Jie Liu Xiaoqing Zhao Yilin Pang Xinjie Liu Jiawei Zhang Lei Ma Wenxiang Li Xue Yao Shiqing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期434-439,共6页
Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we... Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we established a rat model of T10 moderate spinal cord injury using an NYU Impactor ModerⅢand performed intraperitoneal injection of argatroban for 3 consecutive days.Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord.RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway,which is involved in astrogliosis and glial scar formation.Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway.Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord.Taken together,these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway,thereby promoting the recovery of neurological function after spinal cord injury. 展开更多
关键词 ARGATROBAN ASTROGLIOSIS JAK/STAT signaling pathway protease-activated receptor-1 spinal cord injury THROMBIN vimentin
下载PDF
Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
3
作者 WU Shou-Wu LIN Shao-Kun +11 位作者 NIAN Zhong-Zhu WANG Xin-Wen LIN Wei-Nian ZHUANG Li-Ming WU Zhi-Sheng HUANG Zhi-Wei WANG A-Min GAO Ni-Li CHEN Jia-Wen YUAN Wen-Ting LU Kai-Xian LIAO Jun 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第9期2182-2193,共12页
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect... Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC. 展开更多
关键词 mucin 1 nasopharyngeal carcinoma NF-κB signaling pathway PROLIFERATION APOPTOSIS
下载PDF
Netrin-1 signaling pathway mechanisms in neurodegenerative diseases
4
作者 Kedong Zhu Hualong Wang +2 位作者 Keqiang Ye Guiqin Chen Zhaohui Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期960-972,共13页
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur... Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease axon guidance colorectal cancer Netrin-1 receptors Netrin-1 signaling pathways NETRIN-1 neurodegenerative diseases neuron survival Parkinson’s disease UNC5C
下载PDF
Enhancement of porcine in vitro embryonic development through luteolin‑mediated activation of the Nrf2/Keap1 signaling pathway
5
作者 Se-Been Jeon Pil-Soo Jeong +5 位作者 Min Ju Kim Hyo-Gu Kang Bong-Seok Song Sun-Uk Kim Seong-Keun Cho Bo-Woong Sim 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期600-613,共14页
Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Lut... Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Luteolin(Lut)has been documented for its protective effects against oxidative stress in various studies.However,its specific role in embryonic development remains unexplored.This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.Results After undergoing parthenogenetic activation(PA)or in vitro fertilization,embryos supplemented with 0.5μmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates,with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control.Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control.Moreover,Lut supplementation significantly augmented mitochondrial content and membrane potential.Intriguingly,activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut,leading to the upregulation of antioxidant-related gene transcription levels.To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development,we cultured PA embryos in a medium supplemented with brusatol,with or without the inclusion of Lut.The positive effects of Lut on developmental competence were negated by brusatol treatment.Conclusions Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence,and offers insight into the mechanisms regulating early embryonic development. 展开更多
关键词 LUTEOLIN Mitochondrial function Nrf2/Keap1 signaling pathway Oxidative stress Porcine embryo development
下载PDF
Pachymic acid exerts antitumor activities by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B
6
作者 Hao Zhang Kun Zhu +5 位作者 Xue-Feng Zhang Yi-Hui Ding Bing Zhu Wen Meng Qing-Song Ding Fan Zhang 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第4期170-180,共11页
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor... Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B. 展开更多
关键词 Pachymic acid Lung adenocarcinoma Protein tyrosine phosphatase 1B Wnt/β-catenin signaling pathway METASTASIS ANGIOGENESIS AUTOPHAGY
下载PDF
Exploring the effect of Bushen Bitong recipe-containing serum on IL-1β-induced chondrocyte apoptosis based on SOX9/NF-κB/MMP-13 signaling pathway
7
作者 YI Lin ZHANG Wen-hao +4 位作者 XIANG Wen-yuan SHI Zheng-yu REMILA Aimai-ti DENG Ying-jie FANG Rui 《Journal of Hainan Medical University》 CAS 2024年第4期1-7,共7页
Objective:To observe the effect and possible mechanism of action of Bushen Bitong recipe(BSBT)containing serum on IL-1β-induced chondrocyte apoptosis.Methods:Generation 3 rat chondrocytes were randomized into Control... Objective:To observe the effect and possible mechanism of action of Bushen Bitong recipe(BSBT)containing serum on IL-1β-induced chondrocyte apoptosis.Methods:Generation 3 rat chondrocytes were randomized into Control,IL-1β,IL-1β+BSBT(L),IL-1β+BSBT(M),and IL-1β+BSBT(H)groups(5%,10%and 15%BSBT-containing serum),and then 24h after intervention respectively,the cell proliferation and Apoptosis rate;Western blot detected the expression levels of Bcl-2,BAX,Caspase-3,SOX9,NF-κB p65,MMP-13 proteins in chondrocytes.ELISA detected the levels of TNF-α,IL-6,and bFGF in the supernatants of chondrocyte culture.Results:Compared with Control group,cell proliferation activity decreased,apoptosis rate increased,NF-κB p65,MMP-13 protein level and TNF-α,IL-6 level increased,and SOX9 protein level and bFGF level decreased in IL-1βgroup;compared with IL-1βgroup,different concentrations of BSBT-containing serum group,cell proliferation activity increased,and apoptosis rate decreased.NF-κB p65,MMP-13 protein level and TNF-α,IL-6 level decreased,SOX9 protein level and bFGF level increased;compared with IL-1β+BSBT(L)group,cell proliferation activity increased,apoptosis rate decreased in IL-1β+BSBT(M)and IL-1β+BSBT(H)groups,and NF-κB p65,MMP-13 protein level and TNF-αlevel decreased.13 protein levels and TNF-αand IL-6 levels decreased,and SOX9 protein levels and bFGF levels increased.Conclusion:BSBT-containing serum may promote IL-1β-induced proliferation of chondrocytes,reduce apoptosis,improve the microenvironment of chondrocytes,and promote cartilage repair through the SOX9/NF-κB/MMP-13 signaling pathway. 展开更多
关键词 Bushen Bitong recipe Osteoarthritis CHONDROCYTES signaling pathway IL-1Β
下载PDF
Electroacupuncture improves myocardial fibrosis in heart failure rats by attenuating ECM collagen deposition through modulation of TGF-β1/Smads signaling pathway
8
作者 Wen-Hui Wang Qian-Lan Zeng +3 位作者 Jiao-Jiao Zhang Hao-Sheng Wu Sheng-Bing Wu Mei-Qi Zhou 《Traditional Medicine Research》 2024年第8期1-10,共10页
Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure tre... Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix. 展开更多
关键词 heart failure ELECTROACUPUNCTURE heart meridian of Hand-Shaoyin collagen deposition TGF-β1/Smads signaling pathway myocardial fibrosis
下载PDF
X-Paste improves wound healing in diabetes via NF-E2-related factor/HO-1 signaling pathway
9
作者 Ming-Wei Du Xin-Lin Zhu +8 位作者 Dong-Xing Zhang Xian-Zhen Chen Li-Hua Yang Jin-Zhou Xiao Wen-Jie Fang Xiao-Chun Xue Wei-Hua Pan Wan-Qing Liao Tao Yang 《World Journal of Diabetes》 SCIE 2024年第6期1299-1316,共18页
BACKGROUND Diabetic foot ulcers(DFU),as severe complications of diabetes mellitus(DM),significantly compromise patient health and carry risks of amputation and mortality.AIM To offer new insights into the occurrence a... BACKGROUND Diabetic foot ulcers(DFU),as severe complications of diabetes mellitus(DM),significantly compromise patient health and carry risks of amputation and mortality.AIM To offer new insights into the occurrence and development of DFU,focusing on the therapeutic mechanisms of X-Paste(XP)of wound healing in diabetic mice.METHODS Employing traditional Chinese medicine ointment preparation methods,XP combines various medicinal ingredients.High-performance liquid chromatography(HPLC)identified XP’s main components.Using streptozotocin(STZ)-induced diabetic,we aimed to investigate whether XP participated in the process of diabetic wound healing.RNA-sequencing analyzed gene expression differences between XP-treated and control groups.Molecular docking clarified XP’s treatment mechanisms for diabetic wound healing.Human umbilical vein endothelial cells(HUVECs)were used to investigate the effects of Andrographolide(Andro)on cell viability,reactive oxygen species generation,apoptosis,proliferation,and metastasis in vitro following exposure to high glucose(HG),while NF-E2-related factor-2(Nrf2)knockdown elucidated Andro’s molecular mechanisms.RESULTS XP notably enhanced wound healing in mice,expediting the healing process.RNA-sequencing revealed Nrf2 upregulation in DM tissues following XP treatment.HPLC identified 21 primary XP components,with Andro exhibiting strong Nrf2 binding.Andro mitigated HG-induced HUVECs proliferation,metastasis,angiogenic injury,and inflammation inhibition.Andro alleviates HG-induced HUVECs damage through Nrf2/HO-1 pathway activation,with Nrf2 knockdown reducing Andro’s proliferative and endothelial protective effects.CONCLUSION XP significantly promotes wound healing in STZ-induced diabetic models.As XP’s key component,Andro activates the Nrf2/HO-1 signaling pathway,enhancing cell proliferation,tubule formation,and inflammation reduction. 展开更多
关键词 Words:Diabetes mellitus Wound healing NF-E2-related factor-2/HO-1 signaling pathway ANDROGRAPHOLIDE
下载PDF
Exploring the mechanism of electroacupuncture at different acupoints on acute colitis rats based on JAK2/STAT3/SOCS1 signaling pathway
10
作者 ZHANG Chun-qing TANG Kun-peng +2 位作者 YAN Li-ping WEN Tan WANG Hai-jun 《Journal of Hainan Medical University》 CAS 2024年第3期1-7,共7页
Objective:To investigate the mechanism of JAK2/STAT3/SOCS1 signaling pathway in electroacupuncture of different acupoints on acute colitis rats.Methods:36 SPF SD rats were randomly divided into 6 groups,with 6 rats in... Objective:To investigate the mechanism of JAK2/STAT3/SOCS1 signaling pathway in electroacupuncture of different acupoints on acute colitis rats.Methods:36 SPF SD rats were randomly divided into 6 groups,with 6 rats in each group.The rat model of acute colitis was prepared by enema with glacial acetic acid solution.After the model was established,electroacupuncture was given to each acupoint group,with density wave,frequency 2Hz-50 Hz,intensity 2 mA,muscle tremor as the degree 20 min/time,1 time/day,for 3 consecutive days.Observe the general condition of rats;the pathological changes of colonic mucosa in rats were observed by HE method.The contents of serum interleukin-4(IL-4)and interleukin-8(IL-8)were detected by ELISA.Western blot and RT-PCR were used to detect the expression of JAK2,STAT3,SOCS1 protein and mRNA in rat colon tissue.Results:In contrast to the normal group,the overall condition of the model group was worse,the colonic mucosa was severely damaged,even necrotic,and the ulcer surface was obvious.The content of IL-4 in serum was obviously reduced,and the content of IL-8 was obviously go up(P<0.01).The protein content of JAK2,STAT3 and the expression of JAK2,STAT3 mRNA in colon tissue of rats were obviously go up,while the protein content of SOCS1 and the expression of SOCS1 mRNA were obviously reduced(P<0.01).In contrast to the model group,the general condition of rats in each acupoint group was significantly improved,the damage and necrosis of colonic mucosa and ulcer surface were obviously alleviated,the content of IL-4 in serum was obviously go up,and the content of IL-8 was significantly decreased(P<0.01).The protein content of JAK2,STAT3 and the expression of JAK2,STAT3 mRNA in colon tissue of rats were obviously reduced,while the protein content of SOCS1 and the expression of SOCS1 mRNA were obviously go up(P<0.05,P<0.01).Comparison of different acupoint groups,the colonic mucosal injury in the Zusanli group was significantly reduced,the content of serum IL-4 was significantly increased,and the content of IL-8 was significantly decreased(P<0.05,P<0.01).The protein content and mRNA expression of JAK2 and STAT3 in colon tissue were significantly down-regulated,while the protein content and mRNA expression of SOCS1 were significantly go up(P<0.05,P<0.01).Conclusion:Electroacupuncture at each acupoint can improve the damage of colonic mucosa and reduce the inflammatory response.The therapeutic effect of Zusanli(ST36)is better than that of Tianshu(ST25),Dachangshu(BL25)and Shangjuxu(ST37).The mechanism may be related to the regulation of JAK2/STAT3/SOCS1 signaling pathway related proteins and inflammatory cytokines IL-4 and IL-8. 展开更多
关键词 ELECTROACUPUNCTURE Different acupoints Acute colitis Inflammatory factors JAK2/STAT3/SOCS1 signaling pathway
下载PDF
Calcitriol attenuates liver fibrosis through hepatitis C virus nonstructural protein 3-transactivated protein 1-mediated TGF β1/Smad3 and NF-κB signaling pathways 被引量:1
11
作者 Liu Shi Li Zhou +13 位作者 Ming Han Yu Zhang Yang Zhang Xiao-Xue Yuan Hong-Ping Lu Yun Wang Xue-Liang Yang Chen Liu Jun Wang Pu Liang Shun-Ai Liu Xiao-Jing Liu Jun Cheng Shu-Mei Lin 《World Journal of Gastroenterology》 SCIE CAS 2023年第18期2798-2817,共20页
BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy optio... BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis. 展开更多
关键词 Nonstructural protein 3-transactivated protein 1 CALCITRIOL Liver fibrosis Hepatic stellate cells Mouse model TGFβ1/Smad3 NF-κB signaling pathway
下载PDF
YWHAH activates the HMGA1/PI3K/AKT/mTOR signaling pathway by positively regulating Fra-1 to affect the proliferation of gastric cancer cells
12
作者 JUNYU HE FENG ZENG +5 位作者 XI JIN LIN LIANG MENGXIANG GAO WENTAO LI GUIYUAN LI YANHONG ZHOU 《Oncology Research》 SCIE 2023年第4期615-630,共16页
Fos-related antigen 1(Fra-1)is a nuclear transcription factor that regulates cell growth,differentiation,and apoptosis.It is involved in the proliferation,invasion,apoptosis and epithelial mesenchymal transformation o... Fos-related antigen 1(Fra-1)is a nuclear transcription factor that regulates cell growth,differentiation,and apoptosis.It is involved in the proliferation,invasion,apoptosis and epithelial mesenchymal transformation of malignant tumor cells.Fra-1 is highly expressed in gastric cancer(GC),affects the cycle distribution and apoptosis of GC cells,and participates in GC occurrence and development.However,the detailed mechanism of Fra-1 in GC is unclear,such as the identification of Fra-1-interacting proteins and their role in GC pathogenesis.In this study,we identified tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta(YWHAH)as a Fra-1-interacting protein in GC cells using co-immunoprecipitation combined with liquid chromatography-tandem mass spectrometry.Experiments showed that YWHAH positively regulated Fra-1 mRNA and protein expression,and affected GC cell proliferation.Whole proteome analysis showed that Fra-1 affected the activity of the high mobility group AT-hook 1(HMGA1)/phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)/protein kinase B(AKT)/mechanistic target of rapamycin(mTOR)signaling pathway in GC cells.Western blotting and flow cytometry confirmed that YWHAH activated HMGA1/PI3K/AKT/mTOR signaling pathway by positively regulating Fra-1 to affect GC cell proliferation.These results will help to discover new molecular targets for the early diagnosis,treatment,and prognosis prediction of GC. 展开更多
关键词 Gastric cancer Fra-1 YWHAH signal transduction pathway Cell proliferation
下载PDF
Simiao Wan alleviates obesity-associated insulin resistance via PKCε/IRS-1/PI3K/Akt signaling pathway based on network pharmacology analysis and experimental validation
13
作者 Jing Jin Yin-Yue Xu +3 位作者 Wen-Ping Liu Ke-Hua Hu Ning Xue Zu-Guo Zheng 《Traditional Medicine Research》 2023年第10期56-68,共13页
Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology me... Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment. 展开更多
关键词 Simiao Wan insulin resistance PKCε/IRS-1/PI3K/Akt signaling pathway network pharmacology DAG
下载PDF
Effects of Cigu Xiaozhi Formula on miR-378a-3p Expression and Hh Signaling Pathway in TGF-β1 Induced LX2 Cells
14
作者 Aidi WANG Yanhua MA +1 位作者 Li WANG Xiuping ZHAO 《Medicinal Plant》 CAS 2023年第5期52-56,71,共6页
[Objectives]To observe the effects of Cigu Xiaozhi Formula on miR-378a-3p expression and Hh signaling pathway in TGF-β1 induced and activated LX2 cells.[Methods]Cells were divided into control group,induction group,d... [Objectives]To observe the effects of Cigu Xiaozhi Formula on miR-378a-3p expression and Hh signaling pathway in TGF-β1 induced and activated LX2 cells.[Methods]Cells were divided into control group,induction group,drug-containing serum group,miR-378a-3p inhibitor group,and miR inhibitor NC group.CCK-8 method was used to detect the cell viability of each group,and flow cytometry was used to detect the apoptosis rate of each group.RT-qPCR was used to detect the expression of miR-378a-3p in each group s cells,and RT-qPCR and Western blot were used to detect mRNA and protein expression of Shh,Gli1,Gli2,Col-I,andα-SMA in each group s cells.[Results]Compared with the control group,the cell viability and expression of Shh,Gli1,Gli2,Col-I,andα-SMA mRNA and protein in induction group increased(P<0.01),while the expression of miR-378a-3p decreased(P<0.01).Compared with the induction group,the cell viability and expression of Shh,Gli1,Gli2,Col-I,α-SMA mRNA andα-SMA and Gli2 protein decreased in drug-containing serum group(P<0.05),while cell apoptosis rate and miR-378a-3p expression increased(P<0.01).In miR-378a-3p inhibitor group,cell viability and the expression of Shh,Gli1,Gli2,Col-I,α-SMA mRNA and Gli1,Gli2,α-SMA protein increased(P<0.05,P<0.01),while the apoptosis rate and miR-378a-3p expression decreased(P<0.05,P<0.01).[Conclusions]Cigu Xiaozhi Formula containing serum can upregulate miR-378a-3p expression and downregulate the expression of Gli2 andα-SMA in TGF-β1 induced LX2 cells,thereby inhibiting the activation of LX2 cells and exerting the effects of anti liver fibrosis. 展开更多
关键词 Cigu Xiaozhi Formula LX2 cells TGF-Β1 miR-378a-3p Hh signaling pathway
下载PDF
Effect and Mechanism of Dicliptera chinensis Polysaccharide on miR-141/AMPK/SIRT1 Signaling Pathway in Rats with NAFLD
15
作者 Yifan YIN Haiping LIU +2 位作者 Ya GAO Hewei LI Kefeng ZHANG 《Medicinal Plant》 CAS 2023年第3期42-48,共7页
[Objectives]Non-alcoholic fatty liver disease(NAFLD)rat model was established by feeding high-fat and high-sugar fodder to rats,and the protective effect of Dicliptera chinensis polysaccharide(DCP)on NAFLD rats was st... [Objectives]Non-alcoholic fatty liver disease(NAFLD)rat model was established by feeding high-fat and high-sugar fodder to rats,and the protective effect of Dicliptera chinensis polysaccharide(DCP)on NAFLD rats was studied to explore its potential mechanism.[Methods]45 SD rats were randomly divided into 4 groups:normal control group,model control group and DCP treatment groups(100 and 300 mg/kg).The rats in the normal control group were fed with ordinary fodder,and the rats in other groups were fed with high-fat and high-sugar diet for 14 weeks to establish NAFLD model.From the 9^(th)week,the rats in the DCP treatment groups were given different doses of DCP by intragastric administration(5 mL/kg)for 6 weeks.After the last intragastric administration,the rats fasted for 16 h,and the serum and liver of rats were collected for detection.Hematoxylin-eosin(HE)staining was conducted to observe the histopathological changes of rat liver,and alanine aminotransferase(ALT),aspartate aminotransferase(AST),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),malondialdehyde(MDA),triglyceride(TG),total cholesterol(TC),low density lipoprotein cholesterol(LDL-C),and high density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Interleukin-6(IL-6),interleukin-1β(IL-1β),tumor necrosis factor(TNF-α)and micrornA-141(micro RNA-141)were detected by reverse transcription-polymerase chain reaction(RT-PCR).The expression of SIRT1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)in rat liver was detected by western blot.[Results]Compared with the model control group,the inflammatory damage and steatodegeneration of rats in the DCP groups were relieved to varying degrees,and the number of lipid vacuoles significantly reduced.The ALT,AST,TC,TG and LDL-C content in the serum and MDA content in the liver tissue decreased to varying degrees,while the HDL-C,SOD and GSH-Px content increased.The expression of SIRT1 and AMPK increased,while the expression of miR-141,TNF-α,IL-6 and IL-1βdeclined,and the DCP 300 mg/kg treatment group had better improvement effect.[Conclusions]DCP had a certain protective effect on NAFLD rats,which may be related to the regulation of miR-141/AMPK/SIRT1 signaling pathway. 展开更多
关键词 Dicliptera chinensis polysaccharide Non-alcoholic fatty liver miR-141/AMPK/SIRT1 signaling pathway
下载PDF
Activation of cerebral Ras-related C3 botulinum toxin substrate(Rac) 1 promotes post-ischemic stroke functional recovery in aged mice 被引量:1
16
作者 Fan Bu Jia-Wei Min +5 位作者 Md Abdur Razzaque Ahmad El Hamamy Anthony Patrizz Li Qi Akihiko Urayama Jun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期881-886,共6页
Brain functional impairment after stroke is common;however,the molecular mechanisms of post-stroke recovery remain unclear.It is well-recognized that age is the most important independent predictor of poor outcomes af... Brain functional impairment after stroke is common;however,the molecular mechanisms of post-stroke recovery remain unclear.It is well-recognized that age is the most important independent predictor of poor outcomes after stroke as older patients show poorer functional outcomes following stroke.Mounting evidence suggests that axonal regeneration and angiogenesis,the major forms of brain plasticity responsible for post-stroke recovery,diminished with advanced age.Previous studies suggest that Ras-related C3 botulinum toxin substrate(Rac)1 enhances stroke recovery as activation of Rac1 improved behavior recovery in a young mice stroke model.Here,we investigated the role of Rac1 signaling in long-term functional recovery and brain plasticity in an aged(male,18 to 22 months old C57BL/6J)brain after ischemic stroke.We found that as mice aged,Rac1 expression declined in the brain.Delayed overexpression of Rac1,using lentivirus encoding Rac1 injected day 1 after ischemic stroke,promoted cognitive(assessed using novel object recognition test)and sensorimotor(assessed using adhesive removal tests)recovery on days 14–28.This was accompanied by the increase of neurite and proliferative endothelial cells in the periinfarct zone assessed by immunostaining.In a reverse approach,pharmacological inhibition of Rac1 by intraperitoneal injection of Rac1 inhibitor NSC23766 for 14 successive days after ischemic stroke worsened the outcome with the reduction of neurite and proliferative endothelial cells.Furthermore,Rac1 inhibition reduced the activation of p21-activated kinase 1,the protein level of brain-derived neurotrophic factor,and increased the protein level of glial fibrillary acidic protein in the ischemic brain on day 28 after stroke.Our work provided insight into the mechanisms behind the diminished plasticity after cerebral ischemia in aged brains and identified Rac1 as a potential therapeutic target for improving functional recovery in the older adults after stroke. 展开更多
关键词 aging angiogenesis brain-derived neurotrophic factor(BDNF) cerebral ischemia cognitive recovery NEURITE pak1 rac1 sensorimotor recovery
下载PDF
Timosaponin AⅢ induces drug-metabolizing enzymes by activating constitutive androstane receptor (CAR) via dephosphorylation of the EGFR signaling pathway 被引量:1
17
作者 Muhammad Zubair Hafiz Jie Pan +4 位作者 Zhiwei Gao Ying Huo Haobin Wang Wei Liu Jian Yang 《Journal of Biomedical Research》 CAS CSCD 2024年第4期382-396,共15页
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio... The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway. 展开更多
关键词 timosaponin AⅢ CAR metabolism enzyme ERK1/2 signaling pathway EGFR signaling pathway
下载PDF
运动促进骨骼肌健康的新视角:基于Rac1/PAK1/p38 MAPK信号通路改善肌生成和糖代谢的研究进展与展望 被引量:3
18
作者 任翔宇 沈飞 +2 位作者 金玲 卢健 陈彩珍 《中国体育科技》 北大核心 2023年第5期79-87,共9页
骨骼肌是维持机体运动能力、调节机体能量代谢的重要器官,其内分泌功能也日益被重视。久坐、衰老、肥胖等因素会引起肌萎缩,继而影响糖脂代谢稳态,引起内分泌失调等相关疾病。抑制Rac1/PAK1/p38 MAPK信号通路能干预癌变,而激活该通路可... 骨骼肌是维持机体运动能力、调节机体能量代谢的重要器官,其内分泌功能也日益被重视。久坐、衰老、肥胖等因素会引起肌萎缩,继而影响糖脂代谢稳态,引起内分泌失调等相关疾病。抑制Rac1/PAK1/p38 MAPK信号通路能干预癌变,而激活该通路可控制骨骼肌生成、调节机体糖代谢。通过文献资料调研法分析了Rac1/PAK1/p38 MAPK信号通路的生理基础以及运动对其影响的可能性,系统阐述了运动调控Rac1/PAK1/p38 MAPK信号通路改善肌生成和糖代谢的潜在机制。研究认为,运动可通过Rac1/PAK1/p38 MAPK信号通路促进生肌决定因子的形成和葡萄糖转运蛋白4转位,从而促进骨骼肌再生,改善骨骼肌对葡萄糖的摄取能力。 展开更多
关键词 运动 rac1/pak1/p38 MAPK信号通路 骨骼肌 肌生成 糖代谢
下载PDF
Barley Protein LFBEP-C1 from Lactiplantibacillus plantarum dy-1 Fermented Barley Extracts by Inhibiting Lipid Accumulation in a Caenorhabditis elegans Model
19
作者 ZHANG Jia Yan LIU Meng Ting +4 位作者 LIU Yu Hao DENG Huan BAI Juan XIE Jian Hua XIAO Xiang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第4期377-386,共10页
Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and test... Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways. 展开更多
关键词 LFBEP-C1 Fermentation Protein Caenorhabditis elegans Lipid accumulation signaling pathway
下载PDF
Effect of ginsenoside Rg1 on hematopoietic stem cells in treating aplastic anemia in mice via MAPK pathway
20
作者 Jin-Bo Wang Ming-Wei Du Yan Zheng 《World Journal of Stem Cells》 SCIE 2024年第5期591-603,共13页
BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM T... BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM To assess the therapeutic potential of ginsenoside Rg1 on AA,specifically its protective effects,while elucidating the mechanism at play.METHODS We employed a model of myelosuppression induced by cyclophosphamide(CTX)in C57 mice,followed by administration of ginsenoside Rg1 over 13 d.The invest-igation included examining the bone marrow,thymus and spleen for pathological changes via hematoxylin-eosin staining.Moreover,orbital blood of mice was collected for blood routine examinations.Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice.Additionally,the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot.RESULTS Administration of CTX led to significant damage to the bone marrow’s structural integrity and a reduction in hematopoietic cells,establishing a model of AA.Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice.In comparison to the AA group,ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX.Furthermore,it helped alleviate the blockade in the cell cycle.Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway.CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression,primarily through modulating the MAPK signaling pathway,which paves the way for a novel therapeutic strategy in treating AA,highlighting the potential of ginsenoside Rg1 as a beneficial intervention. 展开更多
关键词 Aplastic anemia Ginsenoside Rg1 MYELOSUPPRESSION MAPK signaling pathway Bone marrow Hematopoietic stem cells
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部