Background:The DNA damage repair mechanism plays a crucial role in the occurrence and development of hepatocellular carcinoma(HCC),and RAD51-associated protein 1(RAD51AP1)has received increasing attention as an import...Background:The DNA damage repair mechanism plays a crucial role in the occurrence and development of hepatocellular carcinoma(HCC),and RAD51-associated protein 1(RAD51AP1)has received increasing attention as an important protein in the homologous recombination repair pathway.However,the role of RAD51AP1 and its molecular regulatory mechanism in HCC still need further investigation.Methods:We first analysed RAD51AP1 expression,functional enrichment and prognostic value in HCC.Then,the miRWalk,miRDB,and Encyclopedia of RNA Interactomes databases were used to predict the corresponding microRNAs and long noncoding RNAs of RAD51AP1,and their expression levels and prognostic value were analysed.Results:RAD51AP1 was upregulated in the majority of cancers include HCC.The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that RAD51AP1 was mainly involved in pathways related to the cell cycle and repair in HCC.Moreover,the expression level of RAD51AP1 was significantly correlated with T stage,pathologic stage,histologic grade and the level of alpha-fetoprotein.In addition,RAD51AP1 was an independent risk factor significantly and had a high predictive value in HCC.Based on ceRNA network,RAD51AP1 may be regulated by upstream MSC-AS1 and hsa-miR-23c to affect the HCC occurrence and development.Conclusions:High expression of RAD51AP1 plays an important biological role in the cell cycle and repair pathways,and has important diagnostic and prognostic value in HCC.Based on the regulatory mechanism of ceRNA network,we speculate that lncRNA MSC-AS1 acts on hsa-miR-23c and regulates DNA damage repair of HCC through RAD51AP1.It provides a new perspective for further study of DNA damage repair mechanism and potential related treatment of HCC.展开更多
基金the financial support from Shandong Traditional Chinese Medicine Science and Technology Project(No.2020M139)the Scientific Research Project of Shandong College of Traditional Chinese Medicine(No.2021FY02)the Development Plan of Laizhou Science and Technology Project(No.2022L01).
文摘Background:The DNA damage repair mechanism plays a crucial role in the occurrence and development of hepatocellular carcinoma(HCC),and RAD51-associated protein 1(RAD51AP1)has received increasing attention as an important protein in the homologous recombination repair pathway.However,the role of RAD51AP1 and its molecular regulatory mechanism in HCC still need further investigation.Methods:We first analysed RAD51AP1 expression,functional enrichment and prognostic value in HCC.Then,the miRWalk,miRDB,and Encyclopedia of RNA Interactomes databases were used to predict the corresponding microRNAs and long noncoding RNAs of RAD51AP1,and their expression levels and prognostic value were analysed.Results:RAD51AP1 was upregulated in the majority of cancers include HCC.The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that RAD51AP1 was mainly involved in pathways related to the cell cycle and repair in HCC.Moreover,the expression level of RAD51AP1 was significantly correlated with T stage,pathologic stage,histologic grade and the level of alpha-fetoprotein.In addition,RAD51AP1 was an independent risk factor significantly and had a high predictive value in HCC.Based on ceRNA network,RAD51AP1 may be regulated by upstream MSC-AS1 and hsa-miR-23c to affect the HCC occurrence and development.Conclusions:High expression of RAD51AP1 plays an important biological role in the cell cycle and repair pathways,and has important diagnostic and prognostic value in HCC.Based on the regulatory mechanism of ceRNA network,we speculate that lncRNA MSC-AS1 acts on hsa-miR-23c and regulates DNA damage repair of HCC through RAD51AP1.It provides a new perspective for further study of DNA damage repair mechanism and potential related treatment of HCC.