期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种改进的RAKEL多标签分类算法 被引量:2
1
作者 金永贤 张微微 周恩波 《浙江师范大学学报(自然科学版)》 CAS 2016年第4期386-391,共6页
RAKEL(random k-labelsets)算法是一种集成技术,能有效解决多标签分类问题.它将原始标签集随机选用一小部分标签子集构成的数据集来训练每个分类器,但由于RAKEL算法构造标签空间的随机性,并未充分考察到样本多个标签之间的相关性,从而... RAKEL(random k-labelsets)算法是一种集成技术,能有效解决多标签分类问题.它将原始标签集随机选用一小部分标签子集构成的数据集来训练每个分类器,但由于RAKEL算法构造标签空间的随机性,并未充分考察到样本多个标签之间的相关性,从而造成分类精度不高,泛化性能受到一定影响.为此,提出了改进的LC-RAKEL算法.首先,通过标签聚类将原始标签集划分成标签簇,再从每个标签簇中各选择一个标签构成标签集,以此发现标签空间中重要且不频繁的映射关系;然后,利用出现次数较少的标签集合组成新的训练数据,训练相应的分类器.实验证明,改进的算法性能优于其他常用多标签分类算法. 展开更多
关键词 多标签分类 rakel 标签空间 随机 不频繁的映射
下载PDF
基于改进的RAKEL算法的心电图诊断分类
2
作者 赵静 韩京宇 +1 位作者 钱龙 毛毅 《计算机应用》 CSCD 北大核心 2022年第6期1892-1897,共6页
心电图(ECG)数据通常包含多种病症,而ECG诊断是一个典型的多标签分类问题。在多标签分类方法中,RAKEL算法将标签集随机分解为若干个大小为k的子集,并建立LP分类器进行训练;然而由于没有充分考虑标签间的相关性,LP分类器中容易产生一些... 心电图(ECG)数据通常包含多种病症,而ECG诊断是一个典型的多标签分类问题。在多标签分类方法中,RAKEL算法将标签集随机分解为若干个大小为k的子集,并建立LP分类器进行训练;然而由于没有充分考虑标签间的相关性,LP分类器中容易产生一些标签组合所对应样本稀少的情况,从而影响预测性能。为了充分考虑标签间的相关性,提出一种基于贝叶斯网络的RAKEL算法BN-RAKEL。首先利用贝叶斯网络找到标签间的相关性,确定候选标签子集;然后对每个标签采用基于信息增益的特征选择算法确定其最优特征空间,并针对每个候选标签子集利用最优特征空间相似性来检测其相关程度,以确定最终的具有强相关性的标签子集;最后在标签子集的最优特征空间上训练LP分类器。在实际的ECG数据集上,与多标签K近邻(ML-KNN)、RAKEL、CC和基于FP-Growth的RAKEL算法FI-RAKEL进行对比,结果显示所提算法在召回率和F-score上最少提高了3.6个百分点和2.3个百分点。实验结果表明,BN-RAKEL算法有较好的预测性能,能有效提升ECG诊断的准确性。 展开更多
关键词 心电图 多标签 标签相关性 贝叶斯网络 信息增益 特征选择 rakel算法
下载PDF
基于RAKEL算法的商品评论多标签分类研究与实现 被引量:3
3
作者 梁睿博 王思远 +1 位作者 李壮 刘亚松 《软件工程》 2019年第1期8-11,共4页
商品通常包含多个属性维度,准确找到商品评论中涉及的属性维度是文本挖掘工作的基础。RAKEL算法是多标签分类中问题转换思路的一种实现。在以往的工作中,由于子标签集合的随机性,没有充分发现和考虑标签之间的相关性,导致分类精度不高... 商品通常包含多个属性维度,准确找到商品评论中涉及的属性维度是文本挖掘工作的基础。RAKEL算法是多标签分类中问题转换思路的一种实现。在以往的工作中,由于子标签集合的随机性,没有充分发现和考虑标签之间的相关性,导致分类精度不高。为此,提出了改进的FI-RAKEL算法。首先通过FP-Growth算法得到标签的频繁项集,再从频繁项集和原始标签集合中选择标签构成新的标签子集,以此充分利用标签相关性训练基分类器。实验证明,改进的FI-RAKEL算法具有更好的评论文本多标签分类性能。 展开更多
关键词 多标签分类 rakel 频繁项集 标签相关性
下载PDF
基于微博文本的用户人格分析模型研究
4
作者 舒晓敏 马晓宁 《软件导刊》 2020年第11期25-28,共4页
传统的微博用户人格分析将人格分为五类,但未考虑人格类别之间潜在的关联性。为此基于多标签集成分类方法(RAkEL)进行改进,构建RAkEL-PA模型。RAkEL-PA模型使用标签集合中不同的随机子集训练相应的Label Powerset(LP)分类器,然后集成所... 传统的微博用户人格分析将人格分为五类,但未考虑人格类别之间潜在的关联性。为此基于多标签集成分类方法(RAkEL)进行改进,构建RAkEL-PA模型。RAkEL-PA模型使用标签集合中不同的随机子集训练相应的Label Powerset(LP)分类器,然后集成所有分类结果作为最终分类结果。在微博用户文本消息数据上进行实验,结果表明,RAkEL-PA模型的两个不同策略对用户人格分类准确率较高。RAkEL-PA模型充分考虑多个人格之间的相关性,以提高用户人格分类鲁棒性。 展开更多
关键词 大五人格 人格分析 多标签学习 rakel-PA 微博文本
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部