A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system.This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray data prov...A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system.This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray data provide information on differences between microarray-based and experiment-based gene expression analyses. According to microarray data, several genes exhibit increased expression(fold change) but they are weakly expressed in experimental studies(based on morphology, protein and mRNA levels). In contrast, some genes are weakly expressed in microarray data and highly expressed in experimental studies;such genes may represent future target genes in Schwann cell studies. These studies allow us to learn about additional genes that could be used to achieve targeted results from experimental studies. In the current big data study by retrieving more than 5000 scientific articles from PubMed or NCBI, Google Scholar, and Google, 1016(up-and downregulated) genes were determined to be related to Schwann cells. However,no experiment was performed in the laboratory; rather, the present study is part of a big data analysis. Our study will contribute to our understanding of Schwann cell biology by aiding in the identification of genes.Based on a comparative analysis of all microarray data, we conclude that the microarray could be a good tool for predicting the expression and intensity of different genes of interest in actual experiments.展开更多
<strong>Objective:</strong><span style="font-family:""><span style="font-family:Verdana;"> This study aimed to identify hub genes that are associated with hepatocellula...<strong>Objective:</strong><span style="font-family:""><span style="font-family:Verdana;"> This study aimed to identify hub genes that are associated with hepatocellular carcinoma (HCC) prognosis by bioinformatics analysis. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Data were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) liver HCC datasets. </span><a name="_Hlk11768117"></a><span style="font-family:Verdana;">The robust rank ag</span><span style="font-family:Verdana;">gregation algorithm was used in integrating the data on differentially ex</span><span style="font-family:Verdana;">pressed genes (DEGs). Online databases DAVID 6.8 and REACTOME were used for </span><span style="font-family:Verdana;">gene ontology and pathway enrichment analysis. R software version 3.5.1, </span><span style="font-family:Verdana;">Cytoscape, and Kaplan-Meier plotter were used to identify hub genes. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> Six GEO datasets and the TCGA liver HCC dataset were included in this analysis. A total of 151 upregulated and 245 downregulated DEGs were iden</span><span style="font-family:Verdana;">tified. The upregulated DEGs most significantly enriched in the functional</span><span style="font-family:Verdana;"> categories of cell division, chromosomes, centromeric regions, and </span><span style="font-family:Verdana;">protein binding, whereas the downregulated DEGs most significantly</span><span style="font-family:Verdana;"> enriched in the </span><a name="_Hlk11059934"></a><span style="font-family:Verdana;">epoxygenase P450 pathway, extracellular region, and heme binding, with respect to biological process, cellular component, and molecular function analysis, respectively. Upregulated DEGS most significantly enriched the cell cycle pathway, whereas downregulated DEGs most significantly enriched </span><span style="font-family:Verdana;">the metabolism pathway. Finally, 88 upregulated and 40 downregulated genes were </span><span><span style="font-family:Verdana;">identified as hub genes. The top 10 upregulated hub DEGs were </span><i><span style="font-family:Verdana;">CDK</span></i><span style="font-family:Verdana;">1,</span></span><i><span style="font-family:Verdana;"> CCNB</span></i><span><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> CCNB</span></i><span style="font-family:Verdana;">2,</span><i><span style="font-family:Verdana;"> CDC</span></i><span style="font-family:Verdana;">20,</span><i><span style="font-family:Verdana;"> CCNA</span></i><span style="font-family:Verdana;">2,</span><i><span style="font-family:Verdana;"> AURKA</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> MAD</span></i><span style="font-family:Verdana;">2</span><i><span style="font-family:Verdana;">L</span></i><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> TOP</span></i><span style="font-family:Verdana;">2</span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> BUB</span></i><span style="font-family:Verdana;">1</span><i><span style="font-family:Verdana;">B </span></i><span style="font-family:Verdana;">and</span></span><i> <span style="font-family:Verdana;">BUB</span></i><span><span style="font-family:Verdana;">1. The top 10 downregulated hub DEGs were </span><i><span style="font-family:Verdana;">ESR</span></i><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> IGF</span></i><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> FTCD</span></i><span style="font-family:Verdana;">,</span></span><i><span style="font-family:Verdana;"> CYP</span></i><span style="font-family:Verdana;">3</span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">4,</span><i><span style="font-family:Verdana;"> SPP</span></i><span style="font-family:Verdana;">2,</span><i> <span style="font-family:Verdana;">C</span></i><span><span style="font-family:Verdana;">8</span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> CYP</span></i><span style="font-family:Verdana;">2</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> TAT</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> F</span></i><span style="font-family:Verdana;">9 and </span><i><span style="font-family:Verdana;">CYP</span></i><span style="font-family:Verdana;">2</span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">9. </span><b><span style="font-family:Verdana;">Conclusions:</span></b><span style="font-family:Verdana;"> This study identified</span></span><span style="font-family:Verdana;"> several upregulated and downregulated hub genes that are associated with the prognosis of HCC patients. Verification of these results using </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">in vivo</span></i><span style="font-family:Verdana;"> studies is warranted.</span></span>展开更多
目的对胆道系统肿瘤,包括肝内胆管癌(ICC)、肝外胆管癌(ECC)及胆囊癌(GBC)的突变基因进行分析,找出胆道系统肿瘤中热点突变基因。方法检索Web of Knowledge、Scopus、PubMed数据库,根据纳入及排除标准纳入文献。最终纳入14篇符合标准的...目的对胆道系统肿瘤,包括肝内胆管癌(ICC)、肝外胆管癌(ECC)及胆囊癌(GBC)的突变基因进行分析,找出胆道系统肿瘤中热点突变基因。方法检索Web of Knowledge、Scopus、PubMed数据库,根据纳入及排除标准纳入文献。最终纳入14篇符合标准的文献,对每一篇文章中的突变基因情况进行统计,运用RRA方法进行分析,寻找ICC、ECC、GBC的热点突变基因。结果找到ICC的热点突变基因为IDH1(突变频率16.9%)、KRAS(突变频率15.7%);ECC热点突变基因为KRAS(突变频率47.0%)、TP53(突变频率29.4%);GBC热点突变基因为TP53(突变频率36.8%)、KRAS(突变频率18.4%)。同时,发现IDH1基因突变为ICC中特有的基因突变类型。结论胆道系统肿瘤中,IDH1、KRAS、TP53为其热点突变基因。其中,KRAS为胆道系统肿瘤共有热点突变基因,IDH1为ICC中特有的热点突变基因。展开更多
Tumor diagnosis by analyzing gene expression profiles becomes an interesting topic in bioinformatics and the main problem is to identify the genes related to a tumor. This paper proposes a rank sum method to identify ...Tumor diagnosis by analyzing gene expression profiles becomes an interesting topic in bioinformatics and the main problem is to identify the genes related to a tumor. This paper proposes a rank sum method to identify the re- lated genes based on the rank sum test theory in statistics. The tumor diagnosis system is constructed by the support vector machine (SVM) trained on the set of the related gene expression profiles. The experiments demonstrate that the constructed tumor diagnosis system with the rank sum method and SVM can reach an accuracy level of 96.2% on the colon data and 100% on the leukemia data.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2018R1D1A1B07040282 to JJ)+1 种基金a grant from Kyung Hee University in 2018(KHU-20181065 to JJ)
文摘A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system.This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray data provide information on differences between microarray-based and experiment-based gene expression analyses. According to microarray data, several genes exhibit increased expression(fold change) but they are weakly expressed in experimental studies(based on morphology, protein and mRNA levels). In contrast, some genes are weakly expressed in microarray data and highly expressed in experimental studies;such genes may represent future target genes in Schwann cell studies. These studies allow us to learn about additional genes that could be used to achieve targeted results from experimental studies. In the current big data study by retrieving more than 5000 scientific articles from PubMed or NCBI, Google Scholar, and Google, 1016(up-and downregulated) genes were determined to be related to Schwann cells. However,no experiment was performed in the laboratory; rather, the present study is part of a big data analysis. Our study will contribute to our understanding of Schwann cell biology by aiding in the identification of genes.Based on a comparative analysis of all microarray data, we conclude that the microarray could be a good tool for predicting the expression and intensity of different genes of interest in actual experiments.
文摘<strong>Objective:</strong><span style="font-family:""><span style="font-family:Verdana;"> This study aimed to identify hub genes that are associated with hepatocellular carcinoma (HCC) prognosis by bioinformatics analysis. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Data were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) liver HCC datasets. </span><a name="_Hlk11768117"></a><span style="font-family:Verdana;">The robust rank ag</span><span style="font-family:Verdana;">gregation algorithm was used in integrating the data on differentially ex</span><span style="font-family:Verdana;">pressed genes (DEGs). Online databases DAVID 6.8 and REACTOME were used for </span><span style="font-family:Verdana;">gene ontology and pathway enrichment analysis. R software version 3.5.1, </span><span style="font-family:Verdana;">Cytoscape, and Kaplan-Meier plotter were used to identify hub genes. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> Six GEO datasets and the TCGA liver HCC dataset were included in this analysis. A total of 151 upregulated and 245 downregulated DEGs were iden</span><span style="font-family:Verdana;">tified. The upregulated DEGs most significantly enriched in the functional</span><span style="font-family:Verdana;"> categories of cell division, chromosomes, centromeric regions, and </span><span style="font-family:Verdana;">protein binding, whereas the downregulated DEGs most significantly</span><span style="font-family:Verdana;"> enriched in the </span><a name="_Hlk11059934"></a><span style="font-family:Verdana;">epoxygenase P450 pathway, extracellular region, and heme binding, with respect to biological process, cellular component, and molecular function analysis, respectively. Upregulated DEGS most significantly enriched the cell cycle pathway, whereas downregulated DEGs most significantly enriched </span><span style="font-family:Verdana;">the metabolism pathway. Finally, 88 upregulated and 40 downregulated genes were </span><span><span style="font-family:Verdana;">identified as hub genes. The top 10 upregulated hub DEGs were </span><i><span style="font-family:Verdana;">CDK</span></i><span style="font-family:Verdana;">1,</span></span><i><span style="font-family:Verdana;"> CCNB</span></i><span><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> CCNB</span></i><span style="font-family:Verdana;">2,</span><i><span style="font-family:Verdana;"> CDC</span></i><span style="font-family:Verdana;">20,</span><i><span style="font-family:Verdana;"> CCNA</span></i><span style="font-family:Verdana;">2,</span><i><span style="font-family:Verdana;"> AURKA</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> MAD</span></i><span style="font-family:Verdana;">2</span><i><span style="font-family:Verdana;">L</span></i><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> TOP</span></i><span style="font-family:Verdana;">2</span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> BUB</span></i><span style="font-family:Verdana;">1</span><i><span style="font-family:Verdana;">B </span></i><span style="font-family:Verdana;">and</span></span><i> <span style="font-family:Verdana;">BUB</span></i><span><span style="font-family:Verdana;">1. The top 10 downregulated hub DEGs were </span><i><span style="font-family:Verdana;">ESR</span></i><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> IGF</span></i><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> FTCD</span></i><span style="font-family:Verdana;">,</span></span><i><span style="font-family:Verdana;"> CYP</span></i><span style="font-family:Verdana;">3</span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">4,</span><i><span style="font-family:Verdana;"> SPP</span></i><span style="font-family:Verdana;">2,</span><i> <span style="font-family:Verdana;">C</span></i><span><span style="font-family:Verdana;">8</span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> CYP</span></i><span style="font-family:Verdana;">2</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">1,</span><i><span style="font-family:Verdana;"> TAT</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> F</span></i><span style="font-family:Verdana;">9 and </span><i><span style="font-family:Verdana;">CYP</span></i><span style="font-family:Verdana;">2</span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">9. </span><b><span style="font-family:Verdana;">Conclusions:</span></b><span style="font-family:Verdana;"> This study identified</span></span><span style="font-family:Verdana;"> several upregulated and downregulated hub genes that are associated with the prognosis of HCC patients. Verification of these results using </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">in vivo</span></i><span style="font-family:Verdana;"> studies is warranted.</span></span>
文摘目的对胆道系统肿瘤,包括肝内胆管癌(ICC)、肝外胆管癌(ECC)及胆囊癌(GBC)的突变基因进行分析,找出胆道系统肿瘤中热点突变基因。方法检索Web of Knowledge、Scopus、PubMed数据库,根据纳入及排除标准纳入文献。最终纳入14篇符合标准的文献,对每一篇文章中的突变基因情况进行统计,运用RRA方法进行分析,寻找ICC、ECC、GBC的热点突变基因。结果找到ICC的热点突变基因为IDH1(突变频率16.9%)、KRAS(突变频率15.7%);ECC热点突变基因为KRAS(突变频率47.0%)、TP53(突变频率29.4%);GBC热点突变基因为TP53(突变频率36.8%)、KRAS(突变频率18.4%)。同时,发现IDH1基因突变为ICC中特有的基因突变类型。结论胆道系统肿瘤中,IDH1、KRAS、TP53为其热点突变基因。其中,KRAS为胆道系统肿瘤共有热点突变基因,IDH1为ICC中特有的热点突变基因。
文摘Tumor diagnosis by analyzing gene expression profiles becomes an interesting topic in bioinformatics and the main problem is to identify the genes related to a tumor. This paper proposes a rank sum method to identify the re- lated genes based on the rank sum test theory in statistics. The tumor diagnosis system is constructed by the support vector machine (SVM) trained on the set of the related gene expression profiles. The experiments demonstrate that the constructed tumor diagnosis system with the rank sum method and SVM can reach an accuracy level of 96.2% on the colon data and 100% on the leukemia data.