Two Delayed-Detached Eddy Simulation(DDES) models, and a Large-Eddy Simulation(LES) model are used to investigate the turbulent flows and mixed convection between a hot plate and a cold plate via the software FLUENT. ...Two Delayed-Detached Eddy Simulation(DDES) models, and a Large-Eddy Simulation(LES) model are used to investigate the turbulent flows and mixed convection between a hot plate and a cold plate via the software FLUENT. The two DDES models include Production-limited DDES(PL-DDES) and Improved DDES(IDDES) models.The Wall-Adapting Local Eddy-Viscosity(WALE) model is the used LES model. The numerical computations are performed at Reynolds number Reb= 4494 and different Richardson numbers Ri = 0.025, 0.048, 0.1. The comparing data is from the Direct Numerical Simulation(DNS) at Reb= 4494 and Ri = 0.048. The comparison reveals that the two DDES models have better performance in predicting time-averaged parameters than the WALE model in the aiding flow. The best predicted time-averaged results are obtained by the PL-DDES model in the opposing flow. Furthermore, the results of different Ri obtained by the PL-DDES model agree well with the DNS data.展开更多
A nonqinear eddy viscosity model (NLEVM) and a scalable hybrid Reynolds averaged Navier-Stokes/large eddy simula- tion (RANS/LES) strategy are developed to improve the capability of the eddy viscosity model (EVM...A nonqinear eddy viscosity model (NLEVM) and a scalable hybrid Reynolds averaged Navier-Stokes/large eddy simula- tion (RANS/LES) strategy are developed to improve the capability of the eddy viscosity model (EVM) to simulate complex flows featuring separations and unsteady motions. To study the performance of the NLEVM, numerical simulations around S809 airfoil are carried out and the results show that the NLEVM performs much better when a large separation occurs. Calculated results of the flow around a triangular cylinder show that the NLEVM can improve the precision of the flow fields to some extents, but the error is still considerable, and the small turbulence structures can not be clearly captured as the EVM. Whereas the scalable hybrid RANS/LES model based on the NLEVM is fairy effective on resolving the turbulent structures and can give more satisfactory predictions of the flow fields.展开更多
Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's tur...Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs.展开更多
The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first ste...The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYSFluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300(calculated using light oil properties) and a Schmidt number of 10~4. The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin–Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.展开更多
Unsteady RANS(URANS),hybrid LES/RANS and IDDES simulations were conducted to numerically investigate the velocity field around,and pressures distribution and forces over a square cylinder immersed in a uniform,steady ...Unsteady RANS(URANS),hybrid LES/RANS and IDDES simulations were conducted to numerically investigate the velocity field around,and pressures distribution and forces over a square cylinder immersed in a uniform,steady oncoming flow with Reynolds number Re=21,400.The vortex shedding responses in terms of Strouhal number,the pressure distribution,the velocity profile and the velocity fluctuations obtained by numerical simulations are compared with experimental data.Compared with 2D URANS simulation,3D simulations using hybrid LES/RANS and IDDES models provide more accurate prediction on the responses in the wake,including mean streamwise velocity profile and rms velocity fluctuations.This also results in more accurate prediction of time-averaged surface pressure coefficient on the rear surface obtained by 3D hybrid LES/RANS and IDDES simulations than by URANS simulation.When a hybrid LES/RANS model or IDDES model is used,a more accurate prediction for either pressure coefficient or velocity profile(especially in the far wake region)is not guaranteed by increasing the mesh resolution along the spanwise direction of the square cylinder.展开更多
The separated turbulent flow around a circular cylinder is investigated using Large-Eddy Simulation (LES), Detached-Eddy Simulation (DES, or hybrid RANS/LES methods), and Unsteady Reynolds-Averaged Navier-Stokes ...The separated turbulent flow around a circular cylinder is investigated using Large-Eddy Simulation (LES), Detached-Eddy Simulation (DES, or hybrid RANS/LES methods), and Unsteady Reynolds-Averaged Navier-Stokes (URANS). The purpose of this study is to examine some typical simulation approaches for the prediction of complex separated turbulent flow and to clarify the capability of applying these approaches to a typical case of the separated turbulent flow around a circular cylinder. Several turbulence models, i.e. dynamic Sub-grid Scale (SGS) model in LES, the DES-based Spalart-Allmaras (S-A) and κ-ω Shear-Stress- Transport (SST) models in DES, and the S-A and SST models in URANS, are used in the calculations. Some typical results, e.g., the mean pressure and drag coefficients, velocity profiles, Strouhal number, and Reynolds stresses, are obtained and compared with previous computational and experimental data. Based on our extensive calculations, we assess the capability and performance of these simulation approaches coupled with the relevant turbulence models to predict the separated turbulent flow.展开更多
基金Supported by the Program of International Science and Technology Cooperation of China(2016YFE0118100)Dongguan Innovative Research team Program(2014607119).
文摘Two Delayed-Detached Eddy Simulation(DDES) models, and a Large-Eddy Simulation(LES) model are used to investigate the turbulent flows and mixed convection between a hot plate and a cold plate via the software FLUENT. The two DDES models include Production-limited DDES(PL-DDES) and Improved DDES(IDDES) models.The Wall-Adapting Local Eddy-Viscosity(WALE) model is the used LES model. The numerical computations are performed at Reynolds number Reb= 4494 and different Richardson numbers Ri = 0.025, 0.048, 0.1. The comparing data is from the Direct Numerical Simulation(DNS) at Reb= 4494 and Ri = 0.048. The comparison reveals that the two DDES models have better performance in predicting time-averaged parameters than the WALE model in the aiding flow. The best predicted time-averaged results are obtained by the PL-DDES model in the opposing flow. Furthermore, the results of different Ri obtained by the PL-DDES model agree well with the DNS data.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.51179100,51279184)
文摘A nonqinear eddy viscosity model (NLEVM) and a scalable hybrid Reynolds averaged Navier-Stokes/large eddy simula- tion (RANS/LES) strategy are developed to improve the capability of the eddy viscosity model (EVM) to simulate complex flows featuring separations and unsteady motions. To study the performance of the NLEVM, numerical simulations around S809 airfoil are carried out and the results show that the NLEVM performs much better when a large separation occurs. Calculated results of the flow around a triangular cylinder show that the NLEVM can improve the precision of the flow fields to some extents, but the error is still considerable, and the small turbulence structures can not be clearly captured as the EVM. Whereas the scalable hybrid RANS/LES model based on the NLEVM is fairy effective on resolving the turbulent structures and can give more satisfactory predictions of the flow fields.
基金The project supported by the Youngster Funding of Academia Sinica and by the National Natural Science Foundation of China
文摘Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs.
文摘The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYSFluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300(calculated using light oil properties) and a Schmidt number of 10~4. The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin–Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.
基金This work was performed while the author served as the National Institute of Standards and Technology(NIST)Director's Postdoctoral Research AssociateThe funding comes from the Structure Performance for Multi-hazards Progam provided by Materials and Structure Systems Division of Engineering Lab of NIST.
文摘Unsteady RANS(URANS),hybrid LES/RANS and IDDES simulations were conducted to numerically investigate the velocity field around,and pressures distribution and forces over a square cylinder immersed in a uniform,steady oncoming flow with Reynolds number Re=21,400.The vortex shedding responses in terms of Strouhal number,the pressure distribution,the velocity profile and the velocity fluctuations obtained by numerical simulations are compared with experimental data.Compared with 2D URANS simulation,3D simulations using hybrid LES/RANS and IDDES models provide more accurate prediction on the responses in the wake,including mean streamwise velocity profile and rms velocity fluctuations.This also results in more accurate prediction of time-averaged surface pressure coefficient on the rear surface obtained by 3D hybrid LES/RANS and IDDES simulations than by URANS simulation.When a hybrid LES/RANS model or IDDES model is used,a more accurate prediction for either pressure coefficient or velocity profile(especially in the far wake region)is not guaranteed by increasing the mesh resolution along the spanwise direction of the square cylinder.
基金supported by the National Natural Science Foundation of China (Grant No. 90405007)the Hundred Talents Program of the Chinese Academy of SciencesProgram for Changjiang Scholars and Innovative Research Team in University.
文摘The separated turbulent flow around a circular cylinder is investigated using Large-Eddy Simulation (LES), Detached-Eddy Simulation (DES, or hybrid RANS/LES methods), and Unsteady Reynolds-Averaged Navier-Stokes (URANS). The purpose of this study is to examine some typical simulation approaches for the prediction of complex separated turbulent flow and to clarify the capability of applying these approaches to a typical case of the separated turbulent flow around a circular cylinder. Several turbulence models, i.e. dynamic Sub-grid Scale (SGS) model in LES, the DES-based Spalart-Allmaras (S-A) and κ-ω Shear-Stress- Transport (SST) models in DES, and the S-A and SST models in URANS, are used in the calculations. Some typical results, e.g., the mean pressure and drag coefficients, velocity profiles, Strouhal number, and Reynolds stresses, are obtained and compared with previous computational and experimental data. Based on our extensive calculations, we assess the capability and performance of these simulation approaches coupled with the relevant turbulence models to predict the separated turbulent flow.