Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplifi...Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplified fragment length polymorphism (AFLP) markers are studied to formulate efficient strategies for breeding cultivars resistant to powdery mildew. The joint analysis of multiple generations and AFLP technique has been applied in this study. The best model is the one with two major genes, additive, dominant, and epistatic effects, plus polygenes with additive, dominant, and epistatic effects (E-l-0 model). The heritabilities of the major genes varied from 64.26% to 97.82%, and susceptibility was incompletely dominant for the two major genes in the three crosses studied. The additive effects of the two major genes and the dominant effect of the second major gene were high, and the epistatic effect of the additive-dominant between the two major genes was the highest in cross I . In cross II, the absolute value of the additive effect, dominant effect, and potential ratio of the first major gene were far higher than those of the second major gene, and the epistatic effect of the additive-additive was the highest. The genetic parameters of the two major genes in cross III were similar to those in cross II. Correlation and regression analyses showed that marker E25/M63-103 was linked to a susceptible gene controlling powdery mildew resistance. The marker could account for 19.98% of the phenotypic variation. When the marker was tested on a diverse set of 29 cucumber lines, the correlation between phenotype and genotype was not significant, which suggested cultivar specialty of gene expression or different methods of resistance to powdery mildew. The target DNA fragment was 103 bp in length, and only a small part was found to be homologous to DNA in the other species evaluated, which indicated that it was unique to the cucumber genome.展开更多
Wheat (Triticum aestivum L.) line Lankao 90(6) carries a recessive powdery mildew resistance gene temporarily named PmLK906 on chromosome 2AL. Near PmLK906 there is another known powdery mildew resistance gene loc...Wheat (Triticum aestivum L.) line Lankao 90(6) carries a recessive powdery mildew resistance gene temporarily named PmLK906 on chromosome 2AL. Near PmLK906 there is another known powdery mildew resistance gene locus Pm4. To track the two powdery mildew resistance genes in wheat breeding program by marker assisted selection (MAS), a linked molecular marker was developed in this study. Wheat gene chip hybridization combined with bulked segregant analysis (BSA) was used to develop an sequence-tagged sites (STS) marker for PmLK906 and Pm4. A new 2 125 bp full-length cDNA clone (GenBank accession no. EU082094) similar to csAtPR5 ofAegilops tauschii was isolated from Lankao 90(6) 21-12, and temporarily named TaAetPR5. Specific products could be amplified from cultivars or lines possessing Pm4a, Pm4b and PmLK906 with primers p9-7pl and p9-7p2 derived from TaAetPR5. TaAetPR5 was linked to PmLK906 at a genetic distance of 7.62 cM, and cosegregated with Pm4a. The p9-7p1 and p9-7p2 could be used as an STS marker for these resistance genes in wheat breeding. Because this marker was cosegregated with Pm4a, it can be used in map-based cloning of the alleles at Pm4 locus also.展开更多
T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding ...T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding behavior remains unclear. Results in this study indicated that the pairing frequency rate of the two differently originated 6VS chromosomes in their F1 hybrid was 18.9% according to genomic in situ hybridization (GISH); the PM resistance plants in the F2 generation from the cross between T6V#4S·6DL translocation line Pm97033 and its PM susceptible wheat variety Wan7107 was fewer than expected. However, the ratio of the resistant vs. the susceptible plants of 15:1 in the F2 generation derived from the cross between the two translocation lines of T6V#2S·6AL and T6V#4S·6DL fitted well. Plants segregation ratio (homozygous:heterozygous:lacking) revealed by molecular marker for T6V#4S·6DL or T6V#2S·6AL in their F2 populations fitted the expected values of 1:2:1 well, inferring that the pairing of the two alien chromosome arms facilitates the transmission of T6V#4S·6DL from the F1 to the F2 generation. A quadrivalent was also observed in 21% of pollen mother cells (PMCs) of homozygote plants containing the two pairs of translocated chromosomes. The chromosome pairing between 6V#2S and 6V#4S indicates that it will be possible to obtain recombinants and clarify if the PM resistance determinant on one alien chromosome arm is different from that on the other.展开更多
文摘Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplified fragment length polymorphism (AFLP) markers are studied to formulate efficient strategies for breeding cultivars resistant to powdery mildew. The joint analysis of multiple generations and AFLP technique has been applied in this study. The best model is the one with two major genes, additive, dominant, and epistatic effects, plus polygenes with additive, dominant, and epistatic effects (E-l-0 model). The heritabilities of the major genes varied from 64.26% to 97.82%, and susceptibility was incompletely dominant for the two major genes in the three crosses studied. The additive effects of the two major genes and the dominant effect of the second major gene were high, and the epistatic effect of the additive-dominant between the two major genes was the highest in cross I . In cross II, the absolute value of the additive effect, dominant effect, and potential ratio of the first major gene were far higher than those of the second major gene, and the epistatic effect of the additive-additive was the highest. The genetic parameters of the two major genes in cross III were similar to those in cross II. Correlation and regression analyses showed that marker E25/M63-103 was linked to a susceptible gene controlling powdery mildew resistance. The marker could account for 19.98% of the phenotypic variation. When the marker was tested on a diverse set of 29 cucumber lines, the correlation between phenotype and genotype was not significant, which suggested cultivar specialty of gene expression or different methods of resistance to powdery mildew. The target DNA fragment was 103 bp in length, and only a small part was found to be homologous to DNA in the other species evaluated, which indicated that it was unique to the cucumber genome.
基金supported by the Innovation Fund for Outstanding Scholars of Henan Province, China(0621001700)
文摘Wheat (Triticum aestivum L.) line Lankao 90(6) carries a recessive powdery mildew resistance gene temporarily named PmLK906 on chromosome 2AL. Near PmLK906 there is another known powdery mildew resistance gene locus Pm4. To track the two powdery mildew resistance genes in wheat breeding program by marker assisted selection (MAS), a linked molecular marker was developed in this study. Wheat gene chip hybridization combined with bulked segregant analysis (BSA) was used to develop an sequence-tagged sites (STS) marker for PmLK906 and Pm4. A new 2 125 bp full-length cDNA clone (GenBank accession no. EU082094) similar to csAtPR5 ofAegilops tauschii was isolated from Lankao 90(6) 21-12, and temporarily named TaAetPR5. Specific products could be amplified from cultivars or lines possessing Pm4a, Pm4b and PmLK906 with primers p9-7pl and p9-7p2 derived from TaAetPR5. TaAetPR5 was linked to PmLK906 at a genetic distance of 7.62 cM, and cosegregated with Pm4a. The p9-7p1 and p9-7p2 could be used as an STS marker for these resistance genes in wheat breeding. Because this marker was cosegregated with Pm4a, it can be used in map-based cloning of the alleles at Pm4 locus also.
基金financially supported by the National Key Research and Development Program,China (2016YFD0102000) the Agricultural Science and Technology Innovation Program (ASTIP) of the CAAS
文摘T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding behavior remains unclear. Results in this study indicated that the pairing frequency rate of the two differently originated 6VS chromosomes in their F1 hybrid was 18.9% according to genomic in situ hybridization (GISH); the PM resistance plants in the F2 generation from the cross between T6V#4S·6DL translocation line Pm97033 and its PM susceptible wheat variety Wan7107 was fewer than expected. However, the ratio of the resistant vs. the susceptible plants of 15:1 in the F2 generation derived from the cross between the two translocation lines of T6V#2S·6AL and T6V#4S·6DL fitted well. Plants segregation ratio (homozygous:heterozygous:lacking) revealed by molecular marker for T6V#4S·6DL or T6V#2S·6AL in their F2 populations fitted the expected values of 1:2:1 well, inferring that the pairing of the two alien chromosome arms facilitates the transmission of T6V#4S·6DL from the F1 to the F2 generation. A quadrivalent was also observed in 21% of pollen mother cells (PMCs) of homozygote plants containing the two pairs of translocated chromosomes. The chromosome pairing between 6V#2S and 6V#4S indicates that it will be possible to obtain recombinants and clarify if the PM resistance determinant on one alien chromosome arm is different from that on the other.