期刊文献+
共找到4,920篇文章
< 1 2 246 >
每页显示 20 50 100
Neural Network Robust Control Based on Computed Torque for Lower Limb Exoskeleton
1
作者 Yibo Han Hongtao Ma +6 位作者 Yapeng Wang Di Shi Yanggang Feng Xianzhong Li Yanjun Shi Xilun Ding Wuxiang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期83-99,共17页
The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the ... The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness. 展开更多
关键词 Lower limb exoskeleton Model compensation rbf neural network Computed torque method
下载PDF
基于RBFNN-ISSA的特大跨径悬索桥有限元模型修正
2
作者 王祺顺 何维 +2 位作者 吴欣 郭伟奇 雷顺成 《振动与冲击》 EI CSCD 北大核心 2024年第7期155-167,共13页
针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首... 针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首先,基于桥梁图纸数据采用通用有限元软件建立一座大跨悬索桥的初始有限元模型,并根据拉丁超立方抽样原则生成子结构材料参数-结构响应的训练样本,通过RBF神经网络和子结构模拟方法对初始有限元模型进行解构重组和样本学习,拟合关于材料参数-结构响应的代理模型。其次,建立考虑主梁挠度和模态频率误差最小的有限元模型参数修正数学优化模型,采用Tent混沌映射及黄金正弦策略改进标准麻雀搜索算法,引入柯西分布函数和贪心保留策略对每一代麻雀种群进行扰动,以用于求解联合静、动力特征的有限元模型修正数学优化问题。最后,以杭瑞高速洞庭湖大桥为工程背景,进行了悬索桥荷载试验,利用实测桥梁响应数据验证了该方法的可行性。研究结果表明:基于RBF神经网络与子结构法的模型修正方法,可以建立拟合精度较高的悬索桥结构代理模型;基于子结构RBF神经网络与改进麻雀搜索算法修正后的有限元模型相较于整体RBF神经网络、支持向量机和Kriging模型,大幅提升了对于实际结构的模拟精度,与实测数据相比,修正前后有限元模型在两级静力加载工况下13个有效测点挠度的平均相对误差降低了25%以上,前8阶模态频率的平均相对误差由-6.83%降至-2.38%,MAC值结果表明修正后模型能够准确地反映出大桥的实际振动状态,有效改善了初始有限元模型计算失真的情况;此外,基于混合策略改进后的麻雀搜索算法对于有限元模型修正参数的寻优具有更佳的收敛效率和稳定性。 展开更多
关键词 桥梁工程 有限元模型修正 改进麻雀搜索算法(ISSA) 悬索桥 径向基神经网络(rbfnn) 柯西变异策略
下载PDF
基于改进t-SNE和RBFNN的柴油机故障诊断 被引量:6
3
作者 尚前明 黄兴烨 +3 位作者 沈栋 朱仁杰 胡秋芳 邱天 《船舶工程》 CSCD 北大核心 2023年第1期91-97,共7页
针对柴油机故障诊断问题,提出一种基于改进t分布的随机邻域嵌入(t-SNE)和径向基函数神经网络(RBFNN)的柴油机故障诊断方法。针对t-SNE算法对振动信号的实际降维效果不够理想的问题,进行自适应加权优化;引入遗传算法(GA)解决果蝇优化算法... 针对柴油机故障诊断问题,提出一种基于改进t分布的随机邻域嵌入(t-SNE)和径向基函数神经网络(RBFNN)的柴油机故障诊断方法。针对t-SNE算法对振动信号的实际降维效果不够理想的问题,进行自适应加权优化;引入遗传算法(GA)解决果蝇优化算法(FOA)陷入局部最优的问题,将GA-FOA应用于RBFNN参数选取中;采用改进后的RBFNN模型对经自适应加权t-SNE降维的数据进行故障识别。研究结果表明,改进后的算法能明显改善聚类效果,提高故障识别的正确率,具有良好的应用前景。 展开更多
关键词 柴油机 振动信号 故障诊断 t分布的随机邻域嵌入(t-SNE) 径向基函数神经网络(rbfnn)
下载PDF
RBF neural network regression model based on fuzzy observations 被引量:1
4
作者 朱红霞 沈炯 苏志刚 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期400-406,共7页
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu... A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy. 展开更多
关键词 radial basis function neural network rbfnn fuzzy membership function imprecise observation regression model
下载PDF
基于自适应RBF神经网络具有模型不确定性的四旋翼无人机指定时间预设性能控制方法
5
作者 张园 郑鸿基 +3 位作者 刘海涛 韦丽娇 沈德战 赵振华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期64-73,共10页
四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立... 四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立,并且在执行任务过程中存在外部未知扰动问题,提出了一种基于指定时间预设性能控制方法,将四旋翼无人机的轨迹跟踪问题转换为对位置子系统和姿态子系统的期望指令跟踪问题;其次,在设计控制器过程中,为了解决“微分爆炸”问题产生的滤波器误差,引入一种新型滤波误差补偿方法,通过RBF神经网络逼近外部未知扰动,并将预测结果补偿给控制器以提高轨迹跟踪的鲁棒性。最后,应用仿真模拟方法验证无人机控制系统稳定性和性能优势,通过飞行试验验证,微风聚拢环境下实际飞行轨迹与仿真模拟结果趋于一致,自主轨迹跟踪起降位置偏差小于1 cm,证明了所提出算法的有效性。 展开更多
关键词 四旋翼无人机 rbf神经网络 轨迹跟踪控制 预设性能约束 模型不确定性
下载PDF
基于RBF神经网络的光伏并网系统自适应等效建模方法
6
作者 张姝 陈豪 肖先勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第4期77-86,共10页
针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应... 针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应波形的检测判据。然后,构建了以电压-频率扰动为输入,有功功率和无功功率为输出的光伏并网系统RBF神经网络模型。最后,在Matlab/Simulink中搭建了光伏并网系统模型,并将其接入IEEE14节点配电网进行仿真验证。结果表明,构建的光伏并网自适应等效模型能够有效辨识电压频率给定控制、有功无功给定控制、下垂控制策略类型,能够准确反映光伏并网系统在不同电压、频率扰动下的有功功率、无功功率的动态响应特性。 展开更多
关键词 光伏并网系统 等效建模 逆变器控制 电压-频率扰动 rbf神经网络
下载PDF
基于GA的RBF神经网络气液两相流持液率预测模型优化
7
作者 廖锐全 李龙威 +2 位作者 王伟 马斌 潘元 《长江大学学报(自然科学版)》 2024年第2期91-100,共10页
为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色... 为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色关联度分析(GRA)对收集的实验数据进行处理,优选出最优模型特征,同时结合遗传算法确定了RBF神经网络结构参数。基于室内实验数据进行训练,并与常用于持液率预测的反向传播(BP)神经网络、GA-BP神经网络及RBF神经网络进行对比,评估了模型的准确性及可行性。结果表明:GA-RBF神经网络模型均方误差为0.0017,均方根误差为0.0416,平均绝对误差为0.0281,拟合度为0.9483。相较于其他神经网络模型,该预测模型表现出更高的计算精度和更强的泛化能力。 展开更多
关键词 持液率 气液两相流 rbf神经网络 遗传算法 数据清洗
下载PDF
Model Identification of Water Purification Systems Using RBF Neural Network
8
作者 徐立新 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期293-395,296-298,共6页
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build... Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided. 展开更多
关键词 rbf neural network: identification OZONE biological activated carbon
下载PDF
基于RBF神经网络滑模控制的卷纸纠偏系统
9
作者 张继红 《中国造纸学报》 CAS CSCD 北大核心 2024年第1期107-113,共7页
设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和... 设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和速度跟踪误差均较小。 展开更多
关键词 卷纸 纠偏控制 rbf神经网络 滑模控制 MATLAB/SIMULINK 动态性能
下载PDF
智能汽车轨迹跟踪MPC-RBF-SMC协同控制策略研究
10
作者 张良 蒋瑞洋 +2 位作者 卢剑伟 程浩 雷夏阳 《汽车工程师》 2024年第5期11-19,共9页
针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当... 针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当前状态车辆期望横摆角速度,并将其与实际横摆角速度的偏差输入RBF-SMC控制器,利用RBF快速逼近非线性模型的特点,结合滑模控制输出前轮转角,实现车辆的横向轨迹跟踪控制。仿真结果表明,与传统的控制器相比,该方法轨迹跟踪精度显著提高,并在不同行驶工况下表现出较好的鲁棒性。 展开更多
关键词 车辆运动学模型 模型预测控制 径向基神经网络 滑模控制
下载PDF
基于MI-PSO-RBF神经网络的铁路客货运量预测研究
11
作者 薛锋 吴林鸿 +1 位作者 汪雯文 周琳 《铁道运输与经济》 北大核心 2024年第9期123-135,共13页
准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选... 准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选取相关指标,利用互信息素法对指标进行筛选,构建影响因素指标体系。基于该指标体系,运用粒子群算法优化的RBF神经网络模型分别对铁路客货运量进行预测,并与传统的BP神经网络、RBF神经网络预测模型进行比较。结果显示,经过参数调整优化后的MI-PSO-RBF神经网络在铁路客运量及货运量的预测精度方面表现最佳,测试集R2分别达到了0.9481与0.9911,具有较高的精度及泛化能力,表明该组合预测模型能够进一步提升神经网络模型预测铁路客货运量精确度。 展开更多
关键词 客货运量预测 互信息素 粒子群算法 rbf神经网络 影响因素法
下载PDF
Calibration Method Based on RBF Neural Networks for Soil Moisture Content Sensor 被引量:9
12
作者 杨敬锋 李亭 +1 位作者 卢启福 陈志民 《Agricultural Science & Technology》 CAS 2010年第2期140-142,共3页
Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content senso... Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content sensor and increase soil moisture content data collection and computational efficiency,this paper presents a RBF neural network calibration method of soil moisture content based on TDR3 soil moisture sensor and wireless sensor networks.Experiment results show that the calibration method is effective... 展开更多
关键词 Calibration Model Soil Moisture Sensor Wireless Sensor networks rbf neural networks
下载PDF
基于PSR和IGSA-RBFNN的负荷预测方法 被引量:1
13
作者 郑超 钟俊 李浩 《传感器与微系统》 CSCD 北大核心 2023年第7期152-155,共4页
神经网络广泛应用于负荷预测(LF)研究,针对神经网络应用于LF中难以确定最优参数的问题,本文结合相空间重构(PSR)理论和神经网络,提出了一种基于改进引力搜索算法(IGSA)优化的径向基函数神经网络(RBFNN)预测模型。以PSR理论确定RBFNN的输... 神经网络广泛应用于负荷预测(LF)研究,针对神经网络应用于LF中难以确定最优参数的问题,本文结合相空间重构(PSR)理论和神经网络,提出了一种基于改进引力搜索算法(IGSA)优化的径向基函数神经网络(RBFNN)预测模型。以PSR理论确定RBFNN的输入;用IGSA对RBFNN关键参数进行迭代寻优,进而提升模型的预测性能。将所提模型应用于某地区实测LF,验证了其可行性、有效性。仿真结果表明:与其他模型相比,所提模型平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)数值最小,具有更高的预测精度。 展开更多
关键词 相空间重构 径向基函数神经网络 改进引力搜索算法 负荷预测
下载PDF
基于RBF网络的新疆特重雪灾区最大积雪深度预测研究 被引量:1
14
作者 杨倩 秦莉 +2 位作者 高培 张涛 张瑞波 《沙漠与绿洲气象》 2024年第1期89-95,共7页
基于建立的雪灾灾损指数,确定新疆特重雪灾区域;进一步聚焦特重雪灾区的8个县(市),包括阿勒泰市、福海县、青河县、塔城市、托里县、沙湾市、尼勒克县和伊宁县,分别建立县域RBF网络模型,预测2021—2050年年最大积雪深度。结果表明:该模... 基于建立的雪灾灾损指数,确定新疆特重雪灾区域;进一步聚焦特重雪灾区的8个县(市),包括阿勒泰市、福海县、青河县、塔城市、托里县、沙湾市、尼勒克县和伊宁县,分别建立县域RBF网络模型,预测2021—2050年年最大积雪深度。结果表明:该模型可用于新疆特重雪灾区最大积雪深度预测,但预测精度仍有待提升;塔城市、尼勒克县将于2025—2029年连续出现最大积雪深度偏高事件,2039年青河县将出现最大积雪深度的极大值,因此应关注可能发生雪灾的年份与县(市),积极做好雪灾的防御工作。 展开更多
关键词 新疆 雪灾 最大积雪深度 rbf神经网络 预测
下载PDF
一般大气环境下钢筋锈蚀深度的RBF神经网络预测模型研究 被引量:1
15
作者 王胜利 刘华 +2 位作者 郑山锁 董淑卿 黄瑜 《地震工程学报》 CSCD 北大核心 2024年第2期269-277,共9页
钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数... 钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数敏感性分析。研究结果表明:与数值模型相比,RBF神经网络对钢筋锈蚀深度预测效率与精度更高,能够有效映射各影响参数与钢筋锈蚀深度之间复杂的非线性关系。参数敏感性分析结果显示,钢筋混凝土表面锈胀裂缝宽度对钢筋锈蚀深度影响最大,钢筋直径、保护层厚度与钢筋直径之比和混凝土抗压强度等其他因素影响次之。所得模型可用于工程检测中钢筋锈蚀程度预测与RC构筑物剩余服役寿命评估。 展开更多
关键词 钢筋混凝土 钢筋锈蚀 rbf神经网络 锈蚀深度预测 敏感性分析
下载PDF
基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究 被引量:2
16
作者 李涛 刘喜 +1 位作者 李振军 赵小琴 《南京工业大学学报(自然科学版)》 CAS 北大核心 2024年第1期112-118,共7页
为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试... 为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试验数据,引入基于反向传播人工神经网络(BP-ANN)与径向基函数神经网络(RBF-ANN)算法,揭示混凝土强度、保护层厚度、钢筋直径、锚固长度及配箍率对变形钢筋与混凝土黏结性能的影响规律,建立基于改进神经网络算法的钢筋与混凝土黏结强度预测模型。对比分析不同数据预处理方法和训练神经元个数对建议模型预测结果的影响,评估各经典模型与建议模型的预测精度和离散性,提出临界锚固长度计算公式。结果表明:BP-ANN预测值与试验值比值的均值、标准差及变异系数分别为1.009、0.188、0.86,其预测精度略高于RBF-ANN;建议模型能够更准确、更稳定地预测钢筋与混凝土的黏结强度,该方法为解决钢筋与混凝土黏结问题提供了新思路。 展开更多
关键词 钢筋混凝土 黏结强度 改进神经网络 影响参数 预测模型 黏结锚固试验 BP-ANN rbf-ANN
下载PDF
基于RS-RBFNN的邮轮建造物资物流集配风险预警
17
作者 谢露强 徐靖 王海燕 《中国安全科学学报》 CAS CSCD 北大核心 2023年第6期114-121,共8页
为解决邮轮建造物资物流集配层级复杂、耦合因素众多引起的产需脱节问题,提出一种粗糙集(RS)融合径向基神经网络(RBFNN)的集成风险预警模型。首先,基于物资物流集配风险因素分析,构建风险预警指标体系,利用网络分析法(ANP)建立指标间相... 为解决邮轮建造物资物流集配层级复杂、耦合因素众多引起的产需脱节问题,提出一种粗糙集(RS)融合径向基神经网络(RBFNN)的集成风险预警模型。首先,基于物资物流集配风险因素分析,构建风险预警指标体系,利用网络分析法(ANP)建立指标间相互依赖和反馈关系评价模型,并据此确定指标重要度;其次,采用功效系数法确定历史数据警情,并以此作为神经网络输出端;最后,利用RS作为RBFNN的前置处理系统,对某邮轮建造过程机电物资物流集配进行风险预警建模,并与RBFNN、反向传播神经网络(BPNN)和RS-BPNN进行性能比较。结果表明:RS-RBFNN模型能有效简化神经网络结构,提高测效率和准确性,克服BP网络训练时间长、稳定性较差且容易陷入局部极小的弊病。 展开更多
关键词 粗糙集(RS) 径向基神经网络(rbfnn) 邮轮建造物资 物流集配 风险预警 反向传播神经网络(BPNN) 网络分析法(ANP)
下载PDF
基于多目标灰狼优化算法与RBF神经网络的真空灭弧室触头结构优化设计 被引量:1
18
作者 丁璨 王周琳 +1 位作者 袁召 李江 《高电压技术》 EI CAS CSCD 北大核心 2024年第2期543-550,共8页
在真空灭弧室触头开断过程中,合适的磁场分布有利于提高其开断性能;在合闸过程中,动、静触头间存在的电动斥力会导致触头出现弹跳现象。针对以上问题,首先建立了带铁芯式杯状纵磁触头的三维模型,进行了磁场分布与电动力的计算;为了进一... 在真空灭弧室触头开断过程中,合适的磁场分布有利于提高其开断性能;在合闸过程中,动、静触头间存在的电动斥力会导致触头出现弹跳现象。针对以上问题,首先建立了带铁芯式杯状纵磁触头的三维模型,进行了磁场分布与电动力的计算;为了进一步提高触头的性能,然后构建了以触头片开槽长度、开槽宽度、径向偏转角度、杯座斜槽高度及单个斜槽上下旋转角度为输入,电流峰值时刻触头间隙中心平面纵向磁场强度最大值、过零时刻中心点处磁滞时间、合闸时动静触头间的电动斥力分别为输出的RBF神经网络模型;最后结合RBF神经网络模型与多目标灰狼优化算法(MOGWO)对触头结构进行了优化。结果表明:与初始结构参数相比,当触头片开槽长度为19.74mm、宽度为3.94mm、径向偏转角为19.9°、杯座斜槽高度为18.0mm、斜槽上下旋转角为119.2°时,触头具有更好的磁场分布特性,且动、静触头间的电动斥力明显减小,有利于提高触头的工作性能。 展开更多
关键词 真空灭弧室触头 电动斥力 rbf神经网络 磁场特性 多目标灰狼优化算法
下载PDF
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:11
19
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function rbf neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
下载PDF
Adaptive RBF neural network control of robot with actuator nonlinearities 被引量:5
20
作者 Jinkun LIU, Yu LU (School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China) 《控制理论与应用(英文版)》 EI 2010年第2期249-256,共8页
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinear... In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion. 展开更多
关键词 Adaptive control rbf neural network Actuator nonlinearity Robot manipulator DEADZONE
下载PDF
上一页 1 2 246 下一页 到第
使用帮助 返回顶部