期刊文献+
共找到5,424篇文章
< 1 2 250 >
每页显示 20 50 100
基于RBF网络的四旋翼无人机姿态鲁棒自适应反步滑模控制
1
作者 刘金华 王远 +1 位作者 张智轩 李涛 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期36-42,共7页
针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数... 针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数估计自适应律来代替神经网络权值的调整,并用Lyapunov理论证明系统的稳定性.仿真结果表明:该方法相比反步滑模控制方法,在有干扰的情况下,有更短的调节时间,更好的跟踪精度,验证了本方法具有更好的抗干扰性和鲁棒性. 展开更多
关键词 四旋翼无人机 姿态控制 反步滑模控制 rbf神经网络 鲁棒自适应控制
下载PDF
农田作业车的RBF-PID横向路径跟踪控制研究
2
作者 项波瑞 赵祚喜 +2 位作者 廖志辉 米亚龙 张清河 《农机化研究》 北大核心 2025年第4期42-49,共8页
针对农业现代化背景下大块农田环境的农用车辆路径跟踪作业的需求,采用RBF神经网络自整定PID控制参数的方法优化传统的基于增量式PID的车辆横向路径跟踪算法,建立3-6-1结构的RBF神经网络,以目标路径位置、实际行驶位置和上一周期方向盘... 针对农业现代化背景下大块农田环境的农用车辆路径跟踪作业的需求,采用RBF神经网络自整定PID控制参数的方法优化传统的基于增量式PID的车辆横向路径跟踪算法,建立3-6-1结构的RBF神经网络,以目标路径位置、实际行驶位置和上一周期方向盘转角为输入量,隐藏层设置6个神经元,输出量为方向盘转角,通过梯度下降法对PID的参数实时调整。最后,利用CarSim/Simulink对基于约翰迪尔825i Gator车型改造的农田取土采样车进行建模和仿真,结果表明:在低速(10 km/h)的U形(蛇形)路径下,平均误差为3.89 cm,最大误差为16.61 cm,标准差为5.99 cm,跟踪效果优于传统增量式PID控制,鲁棒性良好,能满足常见的农田作业车辆路径跟踪工况的作业需求。 展开更多
关键词 农田作业车 横向路径跟踪 rbf-PID CarSim/Simulink
下载PDF
基于RBF神经网络的光伏并网系统自适应等效建模方法 被引量:2
3
作者 张姝 陈豪 肖先勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第4期77-86,共10页
针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应... 针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应波形的检测判据。然后,构建了以电压-频率扰动为输入,有功功率和无功功率为输出的光伏并网系统RBF神经网络模型。最后,在Matlab/Simulink中搭建了光伏并网系统模型,并将其接入IEEE14节点配电网进行仿真验证。结果表明,构建的光伏并网自适应等效模型能够有效辨识电压频率给定控制、有功无功给定控制、下垂控制策略类型,能够准确反映光伏并网系统在不同电压、频率扰动下的有功功率、无功功率的动态响应特性。 展开更多
关键词 光伏并网系统 等效建模 逆变器控制 电压-频率扰动 rbf神经网络
下载PDF
Model Identification of Water Purification Systems Using RBF Neural Network
4
作者 徐立新 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期293-395,296-298,共6页
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build... Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided. 展开更多
关键词 rbf neural network: identification OZONE biological activated carbon
下载PDF
基于RBF网络的新疆特重雪灾区最大积雪深度预测研究 被引量:1
5
作者 杨倩 秦莉 +2 位作者 高培 张涛 张瑞波 《沙漠与绿洲气象》 2024年第1期89-95,共7页
基于建立的雪灾灾损指数,确定新疆特重雪灾区域;进一步聚焦特重雪灾区的8个县(市),包括阿勒泰市、福海县、青河县、塔城市、托里县、沙湾市、尼勒克县和伊宁县,分别建立县域RBF网络模型,预测2021—2050年年最大积雪深度。结果表明:该模... 基于建立的雪灾灾损指数,确定新疆特重雪灾区域;进一步聚焦特重雪灾区的8个县(市),包括阿勒泰市、福海县、青河县、塔城市、托里县、沙湾市、尼勒克县和伊宁县,分别建立县域RBF网络模型,预测2021—2050年年最大积雪深度。结果表明:该模型可用于新疆特重雪灾区最大积雪深度预测,但预测精度仍有待提升;塔城市、尼勒克县将于2025—2029年连续出现最大积雪深度偏高事件,2039年青河县将出现最大积雪深度的极大值,因此应关注可能发生雪灾的年份与县(市),积极做好雪灾的防御工作。 展开更多
关键词 新疆 雪灾 最大积雪深度 rbf神经网络 预测
下载PDF
基于GA的RBF神经网络气液两相流持液率预测模型优化 被引量:1
6
作者 廖锐全 李龙威 +2 位作者 王伟 马斌 潘元 《长江大学学报(自然科学版)》 2024年第2期91-100,共10页
为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色... 为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色关联度分析(GRA)对收集的实验数据进行处理,优选出最优模型特征,同时结合遗传算法确定了RBF神经网络结构参数。基于室内实验数据进行训练,并与常用于持液率预测的反向传播(BP)神经网络、GA-BP神经网络及RBF神经网络进行对比,评估了模型的准确性及可行性。结果表明:GA-RBF神经网络模型均方误差为0.0017,均方根误差为0.0416,平均绝对误差为0.0281,拟合度为0.9483。相较于其他神经网络模型,该预测模型表现出更高的计算精度和更强的泛化能力。 展开更多
关键词 持液率 气液两相流 rbf神经网络 遗传算法 数据清洗
下载PDF
Calibration Method Based on RBF Neural Networks for Soil Moisture Content Sensor 被引量:9
7
作者 杨敬锋 李亭 +1 位作者 卢启福 陈志民 《Agricultural Science & Technology》 CAS 2010年第2期140-142,共3页
Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content senso... Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content sensor and increase soil moisture content data collection and computational efficiency,this paper presents a RBF neural network calibration method of soil moisture content based on TDR3 soil moisture sensor and wireless sensor networks.Experiment results show that the calibration method is effective... 展开更多
关键词 Calibration Model Soil Moisture Sensor Wireless Sensor Networks rbf neural Networks
下载PDF
基于MI-PSO-RBF神经网络的铁路客货运量预测研究 被引量:1
8
作者 薛锋 吴林鸿 +1 位作者 汪雯文 周琳 《铁道运输与经济》 北大核心 2024年第9期123-135,共13页
准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选... 准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选取相关指标,利用互信息素法对指标进行筛选,构建影响因素指标体系。基于该指标体系,运用粒子群算法优化的RBF神经网络模型分别对铁路客货运量进行预测,并与传统的BP神经网络、RBF神经网络预测模型进行比较。结果显示,经过参数调整优化后的MI-PSO-RBF神经网络在铁路客运量及货运量的预测精度方面表现最佳,测试集R2分别达到了0.9481与0.9911,具有较高的精度及泛化能力,表明该组合预测模型能够进一步提升神经网络模型预测铁路客货运量精确度。 展开更多
关键词 客货运量预测 互信息素 粒子群算法 rbf神经网络 影响因素法
下载PDF
基于自适应RBF神经网络具有模型不确定性的四旋翼无人机指定时间预设性能控制方法
9
作者 张园 郑鸿基 +3 位作者 刘海涛 韦丽娇 沈德战 赵振华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期64-73,共10页
四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立... 四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立,并且在执行任务过程中存在外部未知扰动问题,提出了一种基于指定时间预设性能控制方法,将四旋翼无人机的轨迹跟踪问题转换为对位置子系统和姿态子系统的期望指令跟踪问题;其次,在设计控制器过程中,为了解决“微分爆炸”问题产生的滤波器误差,引入一种新型滤波误差补偿方法,通过RBF神经网络逼近外部未知扰动,并将预测结果补偿给控制器以提高轨迹跟踪的鲁棒性。最后,应用仿真模拟方法验证无人机控制系统稳定性和性能优势,通过飞行试验验证,微风聚拢环境下实际飞行轨迹与仿真模拟结果趋于一致,自主轨迹跟踪起降位置偏差小于1 cm,证明了所提出算法的有效性。 展开更多
关键词 四旋翼无人机 rbf神经网络 轨迹跟踪控制 预设性能约束 模型不确定性
下载PDF
基于IPSO-RBF神经网络的西北内陆河流域突发水污染风险评估
10
作者 靳春玲 蔡惠春 +2 位作者 贡力 田亮 李战江 《环境科学与技术》 CAS CSCD 北大核心 2024年第9期120-127,共8页
突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模... 突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模型(RBF)构建突发水污染风险评价模型。为进一步保证模型精度,采用改进惯性权重因子和学习因子的粒子群算法(IPSO)对神经网络模型参数进行优化,建立IPSO-RBF神经网络西北内陆河突发水污染风险评价模型,并运用该模型对石羊河流域武威段2017-2022年突发水污染进行风险等级评价。结果显示,石羊河流域武威段突发水污染2017-2019年风险等级为Ⅱ级,2020-2022年风险等级为Ⅲ级,结果与熵权-TOPSIS法一致,与流域治理情况相符。该研究成果有利于提升石羊河流域突发水污染的防控水平与应急处置能力,对于西北内陆河流域水资源管理以及祁连山生态保护具有重要意义。 展开更多
关键词 突发水污染 风险评估 rbf神经网络 IPSO算法 内陆河流域
下载PDF
基于RBF神经网络滑模控制的卷纸纠偏系统
11
作者 张继红 《中国造纸学报》 CAS CSCD 北大核心 2024年第1期107-113,共7页
设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和... 设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和速度跟踪误差均较小。 展开更多
关键词 卷纸 纠偏控制 rbf神经网络 滑模控制 MATLAB/SIMULINK 动态性能
下载PDF
基于RBF神经网络的汽车内饰皮革智能切割系统设计
12
作者 贺丽娟 《中国皮革》 CAS 2024年第10期12-15,共4页
随着汽车用皮革的迅速发展,开发一套满足汽车内饰皮革生产需求的智能切割系统具有重要意义。本文简述了汽车内饰皮革切割系统的发展,构建了基于径向基函数(Radial Basis Function,RBF)神经网络的汽车内饰皮革智能切割系统,介绍了系统主... 随着汽车用皮革的迅速发展,开发一套满足汽车内饰皮革生产需求的智能切割系统具有重要意义。本文简述了汽车内饰皮革切割系统的发展,构建了基于径向基函数(Radial Basis Function,RBF)神经网络的汽车内饰皮革智能切割系统,介绍了系统主要硬件配置选型和软件的设计,提出了基于RBF神经网络PID(Proportional Integral Derivative,比例-积分-微分)控制算法;通过搭建试验平台,测试汽车内饰皮革智能切割系统的可行性、切割精度与效率。结果表明,该系统能够较好地满足汽车内饰皮革切割方面的需求。 展开更多
关键词 rbf神经网络 PID控制 汽车内饰 皮革 切割系统
下载PDF
智能汽车轨迹跟踪MPC-RBF-SMC协同控制策略研究
13
作者 张良 蒋瑞洋 +2 位作者 卢剑伟 程浩 雷夏阳 《汽车工程师》 2024年第5期11-19,共9页
针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当... 针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当前状态车辆期望横摆角速度,并将其与实际横摆角速度的偏差输入RBF-SMC控制器,利用RBF快速逼近非线性模型的特点,结合滑模控制输出前轮转角,实现车辆的横向轨迹跟踪控制。仿真结果表明,与传统的控制器相比,该方法轨迹跟踪精度显著提高,并在不同行驶工况下表现出较好的鲁棒性。 展开更多
关键词 车辆运动学模型 模型预测控制 径向基神经网络 滑模控制
下载PDF
Adaptive RBF neural network control of robot with actuator nonlinearities 被引量:6
14
作者 Jinkun LIU, Yu LU (School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China) 《控制理论与应用(英文版)》 EI 2010年第2期249-256,共8页
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinear... In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion. 展开更多
关键词 Adaptive control rbf neural network Actuator nonlinearity Robot manipulator DEADZONE
下载PDF
Fault Diagnosis in a Hydraulic Position Servo System Using RBF Neural Network 被引量:10
15
作者 刘红梅 王少萍 欧阳平超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期346-353,共8页
Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fa... Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fault localization. The first-stage RBF neural network is adopted as a failure observer to realize the failure detection. The trained RBF observer, working concurrently with the actual system, accepts the input voltage signal to the servo valve and the measurements of the ram displacements, rebuilds the system states, and estimates accurately the output of the system. By comparing the estimated outputs with the actual measurements, the residual signal is generated and then analyzed to report the occurrence of faults. The second-stage RBF neural network can locate the fault occurring through the residual and net parameters of the first-stage RBF observer. Considering the slow convergence speed of the K-means clustering algorithm, an improved K-means clustering algorithm and a self-adaptive adjustment algorithm of learning rate arc presented, which obtain the optimum learning rate by adjusting self-adaptive factor to guarantee the stability of the process and to quicken the convergence. The experimental results demonstrate that the two-stage RBF neural network model is effective in detecting and localizing the failure of the hydraulic position servo system. 展开更多
关键词 failure diagnosisl hydraulic servo system two-stage rbf neural nctwork improved K-means clustering algorithm
下载PDF
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:11
16
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function rbf neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
下载PDF
Prediction of Free Lime Content in Cement Clinker Based on RBF Neural Network 被引量:5
17
作者 YUAN Jingling ZHONG Luo +1 位作者 DU nongfu TAO Haizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期187-190,共4页
Considering the fact that free calcium oxide content is an important parameter to evaluate the quality of cement clinker, it is very significant to predict the change of free calcium oxide content through adjusting th... Considering the fact that free calcium oxide content is an important parameter to evaluate the quality of cement clinker, it is very significant to predict the change of free calcium oxide content through adjusting the parameters of processing technique. In fact, the making process of cement clinker is very complex. Therefore, it is very difficult to describe this relationship using the conventional mathematical methods. Using several models, i e, linear regression model, nonlinear regression model, Back Propagation neural network model, and Radial Basis Function (RBF) neural network model, we investigated the possibility to predict the free calcium oxide content according to selected parameters of the production process. The results indicate that RBF neural network model can predict the free lime content with the highest precision (1.3%) among all the models. 展开更多
关键词 rbf neural network cement clinker free lime content
下载PDF
Rotation Angle Control Strategy for Telescopic Flexible Manipulator Based on a Combination of Fuzzy Adjustment and RBF Neural Network 被引量:6
18
作者 Dongyang Shang Xiaopeng Li +2 位作者 Meng Yin Fanjie Li Bangchun Wen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期203-226,共24页
The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.W... The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles. 展开更多
关键词 Flexible manipulator rbf neural network Fuzzy control Dynamic uncertainty
下载PDF
PARAMETERS DETERMINATION METHOD OF PHASE-SPACE RECONSTRUCTION BASED ON DIFFERENTIAL ENTROPY RATIO AND RBF NEURAL NETWORK 被引量:4
19
作者 Zhang Shuqing Hu Yongtao +1 位作者 Bao Hongyan Li Xinxin 《Journal of Electronics(China)》 2014年第1期61-67,共7页
Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reco... Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly. 展开更多
关键词 Phase-space reconstruction Chaotic time series Differential entropy ratio Embedding dimension Time delay Radial Basis Function(rbf) neural network
下载PDF
Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network 被引量:5
20
作者 刘震涛 费少梅 《Journal of Zhejiang University Science》 CSCD 2004年第8期960-965,共6页
Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CN... Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resumé, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data. 展开更多
关键词 Dual fuel engine Emission performance rbf neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部