期刊文献+
共找到359篇文章
< 1 2 18 >
每页显示 20 50 100
Design of ANN Based Non-Linear Network Using Interconnection of Parallel Processor
1
作者 Anjani Kumar Singha Swaleha Zubair +3 位作者 Areej Malibari Nitish Pathak Shabana Urooj Neelam Sharma 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3491-3508,共18页
Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong inte... Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong interconnections between them.They offer efficient computational Hopfield neural networks models and optimization constraints used by undergoing a good amount of parallelism to yield optimal results.Artificial neural network(ANN)offers optimal solutions in classifying and clustering the various reels of data,and the results obtained purely depend on identifying a problem.In this research work,the design of optimized applications is presented in an organized manner.In addition,this research work examines theoretical approaches to achieving optimized results using ANN.It mainly focuses on designing rules.The optimizing design approach of neural networks analyzes the internal process of the neural networks.Practices in developing the network are based on the interconnections among the hidden nodes and their learning parameters.The methodology is proven best for nonlinear resource allocation problems with a suitable design and complex issues.The ANN proposed here considers more or less 46k nodes hidden inside 49 million connections employed on full-fledged parallel processors.The proposed ANN offered optimal results in real-world application problems,and the results were obtained using MATLAB. 展开更多
关键词 Artificial neural network(ANN) MULTIprocessOR hidden node nonlinear optimization parallel processing
下载PDF
ELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting 被引量:5
2
作者 M. Madhiarasan S. N. Deepa 《Circuits and Systems》 2016年第10期2975-2995,共21页
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ... The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust. 展开更多
关键词 ELMAN neural network Modified Grey Wolf Optimizer hidden Layer Neuron Units Forecasting Wind Speed
下载PDF
Visual analytics tool for the interpretation of hidden states in recurrent neural networks
3
作者 Rafael Garcia Tanja Munz Daniel Weiskopf 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期233-245,共13页
In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect ... In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network.The technique can help answer questions,such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output.Our visual analytics approach comprises several components:First,our input visualization shows the input sequence and how it relates to the output(using color coding).In addition,hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states.Trajectories are also employed to show the details of the evolution of the hidden state configurations.Finally,a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers,and a histogram indicates the distances between the hidden states within the original space.The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences.To demonstrate the capability of our approach,we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets. 展开更多
关键词 Visual analytics VISUALIZATION Machine learning Classification Recurrent neural networks Long shortterm memory hidden states INTERPRETABILITY Natural language processing Nonlinear projection
下载PDF
Performance Comparison of Neural Networks for HRTFs Approximation 被引量:4
4
作者 朱晓光 《High Technology Letters》 EI CAS 2000年第1期16-19,共4页
In order to approach to head related transfer functions (HRTFs), this paper employs and compares three kinds of one input neural network models, namely, multi layer perceptron (MLP) networks, radial basis function ... In order to approach to head related transfer functions (HRTFs), this paper employs and compares three kinds of one input neural network models, namely, multi layer perceptron (MLP) networks, radial basis function (RBF) networks and wavelet neural networks (WNN) so as to select the best network model for further HRTFs approximation. Experimental results demonstrate that wavelet neural networks are more efficient and useful. 展开更多
关键词 Multi layer PERCEPTRON (MLP) RADIAL basis function (rbf) networkS Wavelet neural networkS (WNN) Head related transfer functions (HRTFs)
下载PDF
基于自组织聚类和JS散度的RBF神经网络
5
作者 董镇林 伍世虔 +1 位作者 叶健 银开州 《计算机工程与设计》 北大核心 2024年第4期1062-1068,共7页
针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚... 针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚类精度,得到代表数据集分布特性的隐节点;为解决隐节点冗余和相似的问题,提出一种基于敏感度分析的隐节点删除方法和基于詹森-香农(JS)散度的隐节点合并方法。仿真结果验证了该算法的有效性。 展开更多
关键词 rbf神经网络 隐层结构 自组织聚类 K-MEANS算法 戴维森堡丁指数 敏感度分析 詹森-香农散度
下载PDF
Ozone Depletion Identification in Stratosphere Through Faster Region-Based Convolutional Neural Network
6
作者 Bakhtawar Aslam Ziyad Awadh Alrowaili +3 位作者 Bushra Khaliq Jaweria Manzoor Saira Raqeeb Fahad Ahmad 《Computers, Materials & Continua》 SCIE EI 2021年第8期2159-2178,共20页
The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place i... The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially.This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network(F-RCNN).The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions.Furthermore,image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation.The permanent changes in climate are of serious concern.The leading causes beyond these destructive variations are ozone layer depletion,greenhouse gas release,deforestation,pollution,water resources contamination,and UV radiation.This research focuses on the prediction by identifying the ozone layer depletion because it causes many health issues,e.g.,skin cancer,damage to marine life,crops damage,and impacts on living being’s immune systems.We have tried to classify the ozone images dataset into two major classes,depleted and non-depleted regions,to extract the required persuading features through F-RCNN.Furthermore,CNN has been used for feature extraction in the existing literature,and those extricated diverse RoIs are passed on to the CNN for grouping purposes.It is difficult to manage and differentiate those RoIs after grouping that negatively affects the gathered results.The classification outcomes through F-RCNN approach are proficient and demonstrate that general accuracy lies between 91%to 93%in identifying climate variation through ozone concentration classification,whether the region in the image under consideration is depleted or non-depleted.Our proposed model presented 93%accuracy,and it outperforms the prevailing techniques. 展开更多
关键词 Deep learning image processing CLASSIFICATION climate variation ozone layer depleted region non-depleted region UV radiation faster region-based convolutional neural network
下载PDF
基于RBF神经网络的齿轮轴热锻成形工艺优化 被引量:1
7
作者 巢淑娟 魏利亚 《热加工工艺》 北大核心 2023年第9期103-105,110,共4页
建立了齿轮轴热锻成形工艺优化的RBF(径向基函数)神经网络模型,对模型计算流程、收敛特性及拟合结果进行分析。基于RBF神经网络对齿轮轴热锻成形工艺进行优化。结果表明:基于RBF神经网络模型优化后的齿轮轴热锻成形件屈服强度由425 MPa... 建立了齿轮轴热锻成形工艺优化的RBF(径向基函数)神经网络模型,对模型计算流程、收敛特性及拟合结果进行分析。基于RBF神经网络对齿轮轴热锻成形工艺进行优化。结果表明:基于RBF神经网络模型优化后的齿轮轴热锻成形件屈服强度由425 MPa提升到456 MPa,最大成形力由565 kN降低到508 kN,屈服强度提升率为7.3%,最大成形力降低率为10.1%;齿轮轴热锻成形最佳生产工艺参数为模具预热温度300℃、坯料加热温度1150℃、摩擦系数0.3、热锻速度40 mm/s。 展开更多
关键词 rbf神经网络 齿轮轴 热锻成形 工艺优化
下载PDF
基于BP和RBF神经网络对静电纺丝工艺参数的优化研究 被引量:1
8
作者 孙旺 朱平 严宏鑫 《材料科学与工艺》 CAS CSCD 北大核心 2023年第3期56-62,共7页
针对静电纺丝在制备过程中易受到如聚合物含量、电压、推进速度和接收距离等工艺参数影响的问题,提出一种静电纺丝工艺参数的优化方法,以提升纳米纤维制备效率。以聚乳酸纳米纤维膜为研究对象,采用纤维直径为性能评价指标,设计实验获得... 针对静电纺丝在制备过程中易受到如聚合物含量、电压、推进速度和接收距离等工艺参数影响的问题,提出一种静电纺丝工艺参数的优化方法,以提升纳米纤维制备效率。以聚乳酸纳米纤维膜为研究对象,采用纤维直径为性能评价指标,设计实验获得训练和测试样本,借助BP(Back Propagation)和RBF(Radial Basis Function)神经网络构建不同工艺参数下的预测模型。结果表明:BP和RBF神经网络模型均能较好的对纤维直径进行预测,但RBF神经网络模型预测精度更高,其平均绝对误差(MAE)为12.125 nm,相对误差不超过7%。RBF神经网络建立的预测模型具有更高的稳定性,模型泛化能力更好,综合预测性能更加优越。所建立的模型可以帮助研究人员制备具有确定纤维直径的静电纺丝纳米纤维膜,实现对工艺参数的优化。 展开更多
关键词 静电纺丝 纳米纤维 rbf神经网络 纤维直径预测 工艺参数优化 BP神经网络
下载PDF
基于CNN-LSTM电力消耗预测模型及系统开发
9
作者 龚立雄 钞寅康 +1 位作者 黄霄 陈佳霖 《计算机仿真》 2024年第8期77-83,共7页
有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网... 有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网络(convolutional neuralnetwork,CNN)与长期短期记忆循环神经网络(long short-term memory network,LSTM)相结合的混合多隐层CNN-LSTM电力能耗预测模型。首先,通过设定最小目标函数作为优化目标,Adam优化算法更新神经网络的权重,并对网络层和批大小进行自适应调优以确定最佳层数和批大小。其次,构建混合多隐层模型并进行隐层组合优化与讨论,确定最佳时间维度的参数,进行时间维度的特征学习进而预测下一时间序列的耗电量。然后以某公司的电力负荷数据为例进行验证,并与LSTM、CNN、RNN等模型的预测结果分析比较。结果表明上述混合多隐层模型预测准确度达98.94%,平均绝对误差(MAE)达到0.0066,均优于其他相关模型,证明以上混合预测模型在电力负荷预测精度方面具有更好的性能。基于上述理论,开发了能耗监控决策系统,实现设备状态实时监控和能耗智能预测功能,为解决传统制造业能耗需求不精确和能源库存浪费问题提供参考和指导。 展开更多
关键词 电力负荷预测 卷积神经网络 长短期记忆神经网络 混合多隐层组合模型
下载PDF
L^2(R^d) Approximation Capability of Incremental Constructive Feedforward Neural Networks with Random Hidden Units
10
作者 Jin Ling LONG Zheng Xue LI Dong NAN 《Journal of Mathematical Research and Exposition》 CSCD 2010年第5期799-807,共9页
This paper studies approximation capability to L^2(Rd) functions of incremental constructive feedforward neural networks (FNN) with random hidden units. Two kinds of therelayered feedforward neural networks are co... This paper studies approximation capability to L^2(Rd) functions of incremental constructive feedforward neural networks (FNN) with random hidden units. Two kinds of therelayered feedforward neural networks are considered: radial basis function (RBF) neural networks and translation and dilation invariant (TDI) neural networks. In comparison with conventional methods that existence approach is mainly used in approximation theories for neural networks, we follow a constructive approach to prove that one may simply randomly choose parameters of hidden units and then adjust the weights between the hidden units and the output unit to make the neural network approximate any function in L2 (Rd) to any accuracy. Our result shows given any non-zero activation function g : R+ → R and g(||x||R^d) ∈ L^2(Rd) for RBF hidden units, or any non-zero activation function g(x) ∈ L^2(R^d) for TDI hidden units, the incremental network function fn with randomly generated hidden units converges to any target function in L2 (R^d) with probability one as the number of hidden units n → ∞, if one only properly adjusts the weights between the hidden units and output unit. 展开更多
关键词 APPROXIMATION incremental feedforward neural networks rbf neural networks TDI neural networks random hidden units.
下载PDF
机器人采摘苹果果实的K-means和GA-RBF-LMS神经网络识别 被引量:43
11
作者 贾伟宽 赵德安 +3 位作者 刘晓洋 唐书萍 阮承治 姬伟 《农业工程学报》 EI CAS CSCD 北大核心 2015年第18期175-183,共9页
为进一步提升苹果果实的识别精度和速度,从而提高苹果采摘机器人的采摘效率。提出一种基于K-means聚类分割和基于遗传算法(genetic algorithm,GA)、最小均方差算法(least mean square,LMS)优化的径向基(radial basis function,RBF)神经... 为进一步提升苹果果实的识别精度和速度,从而提高苹果采摘机器人的采摘效率。提出一种基于K-means聚类分割和基于遗传算法(genetic algorithm,GA)、最小均方差算法(least mean square,LMS)优化的径向基(radial basis function,RBF)神经网络相结合的苹果识别方法。首先将采集到的苹果图像在Lab颜色空间下利用K-means聚类算法对其进行分割,分别提取分割图像的RGB、HSI颜色特征分量和圆方差、致密度、周长平方面积比、Hu不变矩形状特征分量。将提取的16个特征作为神经网络的输入,对RBF神经网络进行训练,以得到苹果果实的识别模型。针对RBF神经网络学习率低、过拟合等不足,引入遗传算法对RBF隐层神经元个数和连接权值进行优化,采取二者混合编码同时进化的优化方式,最后再利用LMS对连接权值进一步学习,建立新的神经网络优化模型(GA-RBF-LMS),以提高神经网络的运行效率和识别精度。为了获得更精确的网络模型,在训练过程中,苹果果实连同树枝、树叶一块训练;得到的模型在识别过程中,可一定程度上避免枝叶遮挡对果实识别的影响。为了更好地验证新方法,分别与传统的BP(back propagation)和RBF神经网络、GA-RBF优化模型比较,结果表明,该文算法对于遮挡、重叠果实的识别率达95.38%、96.17%,总体识别率达96.95%;从训练时间看,该文算法虽耗时较长,用150个样本进行训练平均耗时4.412 s,但训练成功率可达100%,且节省了人工尝试构造网络结构造成的时间浪费;从识别时间看,该文算法识别179个苹果的时间为1.75 s。可见GA-RBF-LMS网络模型在运行效率和识别精度较优。研究结果为苹果采摘机器人快速、精准识别果实提供参考。 展开更多
关键词 图像处理 算法 识别 苹果采摘机器人 K-means分割 特征提取 GA-rbf神经网络
下载PDF
用模糊RBF神经网络简化模型设计多变量自适应模糊控制器 被引量:14
12
作者 鲍鸿 黄心汉 +1 位作者 李锡雄 毛宗源 《控制理论与应用》 EI CAS CSCD 北大核心 2000年第2期169-174,共6页
针对多变量系统实时性要求 ,提出模糊径向基 (RBF)神经网络结构的简化模型及相应算法 ,并对由此简化模型设计的多变量模糊控制器模糊规则的在线自学习算法进行分析 ,提出一种系统动态增益的处理方法和基于过程最优的改进方案 .仿真实验... 针对多变量系统实时性要求 ,提出模糊径向基 (RBF)神经网络结构的简化模型及相应算法 ,并对由此简化模型设计的多变量模糊控制器模糊规则的在线自学习算法进行分析 ,提出一种系统动态增益的处理方法和基于过程最优的改进方案 .仿真实验结果表明该控制器可实现实时自适应控制 ,改进算法是有效的 . 展开更多
关键词 rbf神经网络 过程控制 模糊控制器 自适应控制
下载PDF
基于RBF神经网络的气体流量软测量模型研究 被引量:14
13
作者 仝卫国 杨耀权 金秀章 《中国电机工程学报》 EI CSCD 北大核心 2006年第1期66-69,共4页
流量信号是热工过程中非常重要的一个信号。由于流量信号存在着非线性、随机性和易受干扰的特点,很难建立起一个准确的测量模型,如传统的3种圆管紊流流速分布的近似模型,基于这些模型的传统测量方法很难测量出准确的流量值。该文提出的... 流量信号是热工过程中非常重要的一个信号。由于流量信号存在着非线性、随机性和易受干扰的特点,很难建立起一个准确的测量模型,如传统的3种圆管紊流流速分布的近似模型,基于这些模型的传统测量方法很难测量出准确的流量值。该文提出的基于径向基函数(RBF)神经网络的流量测量模型,采用了带有遗忘因子的梯度下降算法来确定隐层基函数中心的位置和输出层权值的大小。计算结果表明这种模型计算量小、精度高,且算法简单实用。实验结果说明,基于这种模型的流量测量精度较以往模型有很大提高。 展开更多
关键词 流量 热工过程 径向基函数(rbf) 神经网络 软测量
下载PDF
基于RBF神经网络的复杂场景人群目标的识别 被引量:5
14
作者 方卫宁 胡清梅 +1 位作者 李娜 郭北苑 《北京交通大学学报》 CAS CSCD 北大核心 2009年第4期29-33,共5页
大型公共建筑内人群数目及分布的在线监测是有效控制和疏散客流、保障人员安全的重要依据之一.利用公共建筑内现有的闭路电视监视系统,通过计算机视觉技术实现人群数目的自动识别是目前国外普遍采用的一种方式.文中提出了一种基于RBF神... 大型公共建筑内人群数目及分布的在线监测是有效控制和疏散客流、保障人员安全的重要依据之一.利用公共建筑内现有的闭路电视监视系统,通过计算机视觉技术实现人群数目的自动识别是目前国外普遍采用的一种方式.文中提出了一种基于RBF神经网络的复杂场景人群目标的识别算法,利用包含行人数目信息的前景图像的投影曲线等特征数据,通过训练好的RBF神经网络直接得到该前景图像中包含的人群数目.与其他算法相比,该算法具有较高的识别准确率,在一定误差范围内可以达到较好的效果. 展开更多
关键词 人群识别 图像处理 rbf神经网络
下载PDF
确定RBF神经网络隐层节点数的最大矩阵元法 被引量:19
15
作者 吴成茂 范九伦 《计算机工程与应用》 CSCD 北大核心 2004年第20期77-79,共3页
针对基于训练样本输入信息进行非监督聚类来确定RBF神经网络隐层节点数的方法存在利用信息不充分的缺陷,该文提出了一种新的确定RBF神经网络隐层节点数的方法。利用训练样本输入输出全部信息建立样本间的相似矩阵,然后采用最大矩阵元法... 针对基于训练样本输入信息进行非监督聚类来确定RBF神经网络隐层节点数的方法存在利用信息不充分的缺陷,该文提出了一种新的确定RBF神经网络隐层节点数的方法。利用训练样本输入输出全部信息建立样本间的相似矩阵,然后采用最大矩阵元法来确定RBF神经网络隐层节点数。实验仿真表明,该方法是有效的。 展开更多
关键词 rbf神经网络 隐层节点数 相似矩阵 最大矩阵元法
下载PDF
基于AHP-RBF神经网络的居民健康信息素养评价模型研究 被引量:13
16
作者 王辅之 罗爱静 +1 位作者 孙伟伟 谢文照 《医学信息学杂志》 CAS 2013年第7期14-18,共5页
基于文献调查和专家评价方法建立健康信息素养评价体系,应用层次分析法确定指标权重,采用径向基神经网络作为评价工具,提出一套居民健康信息素养评价模型。实验结果表明基于AHP-RBF神经网络的评价模型能够较好地拟合领域专家的评价思维... 基于文献调查和专家评价方法建立健康信息素养评价体系,应用层次分析法确定指标权重,采用径向基神经网络作为评价工具,提出一套居民健康信息素养评价模型。实验结果表明基于AHP-RBF神经网络的评价模型能够较好地拟合领域专家的评价思维,对居民健康信息素养水平的评价更加真实有效。 展开更多
关键词 健康信息素养 层次分析法 径向基神经网络 评价
下载PDF
双脉冲自保护药芯焊丝电弧焊工艺稳定性
17
作者 张恒铭 金秀鹃 +4 位作者 苟宁年 蒋小霞 石玗 周海 刘伟 《焊接学报》 EI CAS CSCD 北大核心 2024年第5期90-97,共8页
鉴于自保护药芯焊丝在野外焊接的重要性,尤其对于野外大型机械等关键零部件的应急修复,提高其焊接成形精度至关重要,因此研究了自保护药芯焊丝在双脉冲电弧模式下的工艺稳定性.为了实现电弧焊工艺稳定性的有效控制,采用单因素试验研究... 鉴于自保护药芯焊丝在野外焊接的重要性,尤其对于野外大型机械等关键零部件的应急修复,提高其焊接成形精度至关重要,因此研究了自保护药芯焊丝在双脉冲电弧模式下的工艺稳定性.为了实现电弧焊工艺稳定性的有效控制,采用单因素试验研究了双脉冲参数对焊接过程稳定性的影响,发现熔滴平均尺寸与电流变异系数关系密切,因此,选取强弱脉冲频率、占空比、强弱脉冲峰值和基值7个双脉冲参数作为输入值,建立一种基于RBF-BP神经网络的熔滴平均尺寸预测模型,结果表明,该预测模型有效、可行,为控制熔滴过渡过程稳定性提供了技术支撑. 展开更多
关键词 自保护药芯焊丝 工艺稳定性 熔滴过渡 rbf-BP神经网络
下载PDF
动态RBF神经网络在浮选过程模型失配中的应用 被引量:5
18
作者 王晓丽 黄蕾 +1 位作者 杨鹏 阳春华 《化工学报》 EI CAS CSCD 北大核心 2016年第3期897-902,共6页
铝土矿泡沫浮选过程中,因矿浆的快速沉淀等原因工艺参数在线检测困难,且入矿性质变化频繁,造成浮选过程参数随入矿的变化而不断改变。而通常建立的静态软测量模型利用固定样本集训练得到,当矿源变化时容易发生模型失配现象,使模型不能... 铝土矿泡沫浮选过程中,因矿浆的快速沉淀等原因工艺参数在线检测困难,且入矿性质变化频繁,造成浮选过程参数随入矿的变化而不断改变。而通常建立的静态软测量模型利用固定样本集训练得到,当矿源变化时容易发生模型失配现象,使模型不能跟踪当前对象。针对变矿源下的模型失配问题,本文提出基于隐层节点动态分配和模型参数动态修正策略的RBF神经网络建模方法,用于铝土矿浮选过程酸碱度的在线检测建模。实际生产数据仿真结果表明该方法能够有效解决模型失配的问题。 展开更多
关键词 泡沫浮选过程 动态rbf神经网络 模型失配 工况迁移
下载PDF
基于RBF神经网络逆系统的注射速度控制 被引量:6
19
作者 常玉清 张红燕 王姝 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期174-177,共4页
为了实现注射速度的精确控制,针对其非线性时变的动态特性,提出了基于神经网络逆系统的控制方法.采用M.Rafizadeh模型描述注射速度系统特性,通过求解该系统的相对阶证明了系统的可逆性.由于注射速度系统逆模型的解析形式难以获得,因此... 为了实现注射速度的精确控制,针对其非线性时变的动态特性,提出了基于神经网络逆系统的控制方法.采用M.Rafizadeh模型描述注射速度系统特性,通过求解该系统的相对阶证明了系统的可逆性.由于注射速度系统逆模型的解析形式难以获得,因此构造了基于RBF神经网络的注射速度逆系统,并将该系统与常规PID控制相结合,对注射速度实现复合控制,解决了基于RBF神经网络逆系统的开环控制效果不理想的问题.仿真实验表明,该控制系统具有良好的跟踪性能及抗干扰性能. 展开更多
关键词 注塑过程 注射速度 rbf神经网络逆系统 复合控制系统
下载PDF
RBF递归神经网络在供热解耦控制中的应用 被引量:4
20
作者 陈烈 朱学莉 +1 位作者 齐维贵 方修睦 《暖通空调》 北大核心 2010年第2期128-132,127,共6页
针对供热过程耦合特性和节能控制的需要,提出了一种基于径向基函数(RBF)递归神经网络的供热解耦控制方法。通过典型信号响应与最小二乘结合的方法得到供热耦合系统模型,利用RBF递归神经网络进行解耦控制,消除了质调节、量调节通道间的... 针对供热过程耦合特性和节能控制的需要,提出了一种基于径向基函数(RBF)递归神经网络的供热解耦控制方法。通过典型信号响应与最小二乘结合的方法得到供热耦合系统模型,利用RBF递归神经网络进行解耦控制,消除了质调节、量调节通道间的非线性强耦合作用。仿真结果证明该方法具有良好的解耦控制特性,满足供热系统多回路控制的要求。 展开更多
关键词 供热过程 神经网络解耦 rbf递归神经网络 嵌入维数预估
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部