An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ...An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs)....Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.展开更多
Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural n...Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process.展开更多
In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanica...In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID.展开更多
文摘随着汽车用皮革的迅速发展,开发一套满足汽车内饰皮革生产需求的智能切割系统具有重要意义。本文简述了汽车内饰皮革切割系统的发展,构建了基于径向基函数(Radial Basis Function,RBF)神经网络的汽车内饰皮革智能切割系统,介绍了系统主要硬件配置选型和软件的设计,提出了基于RBF神经网络PID(Proportional Integral Derivative,比例-积分-微分)控制算法;通过搭建试验平台,测试汽车内饰皮革智能切割系统的可行性、切割精度与效率。结果表明,该系统能够较好地满足汽车内饰皮革切割方面的需求。
基金Project(60874070) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
文摘Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.
文摘Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process.
文摘In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID.