期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
RBF法在机械臂轨迹偏离控制数学模型中的应用
1
作者 陈瑞 任春光 何俊 《机械设计与制造》 北大核心 2023年第12期240-244,共5页
机械臂轨迹偏离控制能够使其准确达到指定位置并完成抓取任务,但在实际控制中,环境扰动因素会影响控制效果。为此,应用RBF法设计了一种新的机械臂轨迹偏离控制数学模型。建立基于机械臂的运动坐标系,求解机械臂运动学逆解,得到机械臂关... 机械臂轨迹偏离控制能够使其准确达到指定位置并完成抓取任务,但在实际控制中,环境扰动因素会影响控制效果。为此,应用RBF法设计了一种新的机械臂轨迹偏离控制数学模型。建立基于机械臂的运动坐标系,求解机械臂运动学逆解,得到机械臂关节角状态。采用多机联合系统测量各个关节角的运行偏差,将偏离量代入到RBF结构中,在训练RBF网络的基础上,考虑非线性摩擦、外界扰动以及动力学模型参数等不确定性,计算补偿控制率。引入自适应调节因子控制机械臂轨迹偏离量。实验结果表明:该模型对不同关节点所处位置的辨识误差较小;不论是否存在扰动,该模型对机械臂位置跟踪控制的效果均较好,机械臂轨迹与期望轨迹重合度较高,说明其能够有效控制机械臂的轨迹偏离情况。 展开更多
关键词 rbf法 机械臂 轨迹偏离控制 运动学 逆解 坐标系
下载PDF
基于RBF最小参数学习法的正流量变量泵滑模自适应控制 被引量:2
2
作者 孙承志 张元良 +1 位作者 康杰 牛东东 《机床与液压》 北大核心 2023年第20期157-162,共6页
为了提高正流量变量泵的性能,提出基于RBF最小参数学习法的正流量变量泵滑模自适应控制方法。分析正流量变量泵电液伺服系统的动力学特性,并进行系统辨识实验获得较为精确的系统数学函数模型;基于RBF最小参数学习法设计滑模控制器,在系... 为了提高正流量变量泵的性能,提出基于RBF最小参数学习法的正流量变量泵滑模自适应控制方法。分析正流量变量泵电液伺服系统的动力学特性,并进行系统辨识实验获得较为精确的系统数学函数模型;基于RBF最小参数学习法设计滑模控制器,在系统参数不确定性、摩擦力干扰和系统泄漏等非线性因素的情况下实现对目标流量的跟踪响应和自适应控制;最后利用MATLAB/Simulink对正流量变量泵的控制系统性能进行仿真实验,并和传统的PID控制器和模糊PID控制器进行比较。仿真实验结果验证了所设计控制方法的可行性和有效性。 展开更多
关键词 滑模自适应控制 rbf最小参数学习 电液伺服系统 鲁棒性
下载PDF
RBF神经网络法在泥页岩有机非均质性测井评价中的应用 被引量:7
3
作者 陈国辉 卢双舫 +2 位作者 田善思 左婉慧 单翀 《甘肃科学学报》 2014年第1期104-108,共5页
探讨了通过RBF神经网络方法利用常规测井曲线评价泥页岩TOC和S1的可行性.利用RBF神经网络法和ΔlgR法对L69井TOC做测井评价并进行对比,二者建模结果中实测值与计算值R2分别为0.73和0.7,前者略优于后者,当声波或电阻曲线与TOC为非线性关... 探讨了通过RBF神经网络方法利用常规测井曲线评价泥页岩TOC和S1的可行性.利用RBF神经网络法和ΔlgR法对L69井TOC做测井评价并进行对比,二者建模结果中实测值与计算值R2分别为0.73和0.7,前者略优于后者,当声波或电阻曲线与TOC为非线性关系时表现尤为突出;利用RBF神经网络法对L69井S1进行测井评价,其建模结果中实测值与计算值R2为0.73,精度较高,成功实现了对泥页岩中S1的预测.研究结果表明,RBF神经网络法对泥页岩有机非均质性(包括含油非均质性)的测井评价可行性和模型精度均较高,具有较大应用前景. 展开更多
关键词 有机非均质性 rbf神经网络 ΔIgR 有机碳 热解烃
下载PDF
STRUCTURE OPTIMIZATION STRATEGY OF NORMALIZED RBF NETWORKS 被引量:1
4
作者 祖家奎 赵淳生 戴冠中 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第1期73-78,共6页
Aimed at studying normali zed radial basis function network (NRBFN), this paper introduces the subtractiv e clustering based on a mountain function to construct the initial structure of NR BFN, adopts singular value ... Aimed at studying normali zed radial basis function network (NRBFN), this paper introduces the subtractiv e clustering based on a mountain function to construct the initial structure of NR BFN, adopts singular value decomposition (SVD) to analyze the relationship betwe en neural nodes of the hidden layer and singular values, cumulative contribution ratio, index vector, and optimizes the structure of NRBFN. Finally, simulation and performance comparison show that the algorithm is feasible and effective. 展开更多
关键词 radial basis function n etworks subtractive clustering singular value decomposition structure optimiz ation
下载PDF
威远地区早古生代筇竹寺组页岩储层有机碳预测方法研究
5
作者 刘成 李俊翔 +7 位作者 张庆 杨亚东 周昕 吴朝容 李勇 张兵 李金玺 韩建辉 《物探化探计算技术》 CAS 2021年第6期705-714,共10页
总有机碳含量(TOC)是评价页岩生烃能力的关键性指标,岩心样品测试仅能获得离散的TOC含量,且成本较高。基于页岩在常规测井上的响应特征,运用多元回归分析法、拓展ΔlgR法、RBF神经网络法对威远地区筇竹寺组页岩TOC含量进行预测。结果表... 总有机碳含量(TOC)是评价页岩生烃能力的关键性指标,岩心样品测试仅能获得离散的TOC含量,且成本较高。基于页岩在常规测井上的响应特征,运用多元回归分析法、拓展ΔlgR法、RBF神经网络法对威远地区筇竹寺组页岩TOC含量进行预测。结果表明:①优质页岩测井曲线响应特征通常表现为“四高两低一扩”,即高自然伽马、高电阻率、高声波时差、高中子、低密度、低光电吸收截面指数、井径扩径,同时测井曲线响应特征还受矿物成分的影响;②ΔlgR法运用于较深页岩储层的TOC预测时,需根据研究区具体地质情况进行合理的改进;③相比多元回归分析法和拓展ΔlgR法,RBF神经网络法能通过空间变换较精确的描述有机碳与测井参数的非线性关系,使预测的有机碳与实测值拟合度高,预测效果最好,为研究区最佳有机碳预测方法。 展开更多
关键词 筇竹寺组页岩 TOC含量预测 多元回归 拓展ΔlgR rbf神经网络
下载PDF
Nuclear power plant fault diagnosis based on genetic-RBF neural network 被引量:1
6
作者 SHI Xiao-cheng XIE Chun-ling WANG Yuan-hui 《Journal of Marine Science and Application》 2006年第3期57-62,共6页
It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neu... It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved. 展开更多
关键词 geneticalgorithm (GA) rbf neural network nuclear power plant
下载PDF
Groundwater level prediction based on hybrid hierarchy genetic algorithm and RBF neural network 被引量:1
7
作者 屈吉鸿 黄强 +1 位作者 陈南祥 徐建新 《Journal of Coal Science & Engineering(China)》 2007年第2期170-174,共5页
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi... As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision. 展开更多
关键词 hybrid hierarchy genetic algorithm radial basis function neural network groundwater level prediction model
下载PDF
基于径向基函数法的拱桥吊杆索力控制研究
8
作者 郑杰 周亚 +2 位作者 满志立 杨卓 张海鹏 《钢结构》 北大核心 2015年第9期56-58,共3页
吊杆索力控制对拱桥结构的安全性和可靠度有很大的影响,是拱桥施工的难点问题。根据一定的张拉顺序,通过MIDAS软件建立有限元模型得到所需的吊杆索力样本库。以成桥设计索力作为径向基函数法(RBF法)的输入向量,所求的初始索力为输出向... 吊杆索力控制对拱桥结构的安全性和可靠度有很大的影响,是拱桥施工的难点问题。根据一定的张拉顺序,通过MIDAS软件建立有限元模型得到所需的吊杆索力样本库。以成桥设计索力作为径向基函数法(RBF法)的输入向量,所求的初始索力为输出向量。利用分布密度参数控制求解精度,逼近两者之间的非线性映射关系,直接计算出吊杆初索力。研究表明:BRF法可以将索力的计算值与设计值之间的误差控制在5%以内,满足工程要求。 展开更多
关键词 径向基函数(rbf) 拱桥 索力
下载PDF
A cellular wireless location algorithm based on RON online RBF neural network
9
作者 Bojian Xu 《International Journal of Technology Management》 2015年第6期8-11,共4页
A location and tracking algorithm with NLOS (Non-Line of Sight) errors for MS (Mobile Station) is proposed in this paper. A cellular localization algorithm based on the RON online RBF neural network is proposed. T... A location and tracking algorithm with NLOS (Non-Line of Sight) errors for MS (Mobile Station) is proposed in this paper. A cellular localization algorithm based on the RON online RBF neural network is proposed. The measurement ofAOA, TOA and TDOA provided by mobile base station is fused to locate mobile. The location performance of RON online RBF neural network is simulated. The simulation results indicate that shrink, attenuation, shift or overlapping phenomenon is avoided when the network redundant hidden nodes appear. It' s location accuracy is significantly improved under complicated multi-path environment. 展开更多
关键词 Wireless location RON rbf
下载PDF
敷设多孔介质和约束层阻尼复合空腔的仿真分析及结构优化
10
作者 陈莎 陆静 王青 《装备制造技术》 2020年第11期7-11,共5页
在弹性空腔上敷设多孔介质和约束层阻尼可以有效地抑制结构的振动和噪声。考虑流体和结构的耦合作用,以及层间的连续性条件,采用Hypermesh建立了此类复合层空腔的有限元模型,并通过声学实验验证有限元模型的有效性。为了提高数值分析的... 在弹性空腔上敷设多孔介质和约束层阻尼可以有效地抑制结构的振动和噪声。考虑流体和结构的耦合作用,以及层间的连续性条件,采用Hypermesh建立了此类复合层空腔的有限元模型,并通过声学实验验证有限元模型的有效性。为了提高数值分析的效率,基于径向基神经算法(RBF)法建立了复合声腔的近似模型,并利用带精英策略的非支配排序遗传算法(NSGA-Ⅱ)对复合结构厚度进行了优化。结果表明,优化后的声压和复合结构的重量均有所降低,达到了降噪和轻量化的目的。 展开更多
关键词 复合空腔 有限元 rbf法 NSGA-Ⅱ 厚度优化
下载PDF
基于量化分析的股票投资策略 被引量:2
11
作者 张清洁 钱魏冬 《河北北方学院学报(自然科学版)》 2020年第11期50-56,共7页
目的通过量化分析研究股票价格的走势,为投资策略的制定提供参考依据。方法选取2007年1月1日至2018年12月31日上海证券指数(上证指数)每日交易收盘价作为原始数据,总共2790个样本数据。首先,利用MATLAB对指数平滑法、RBF神经网络预测法... 目的通过量化分析研究股票价格的走势,为投资策略的制定提供参考依据。方法选取2007年1月1日至2018年12月31日上海证券指数(上证指数)每日交易收盘价作为原始数据,总共2790个样本数据。首先,利用MATLAB对指数平滑法、RBF神经网络预测法和马尔科夫链预测法进行编程。然后,采用以上3种预测法对上证指数的样本数据进行预测分析。结果指数平滑法中二次指数平滑法的预测误差最小,二次指数平滑法拟合出的上证指数的预测值与其实际值的走势基本吻合。ARCH-LM检验显示基于二次指数平滑法得到的误差序列不存在ARCH效应。结论二次指数平滑法的拟合效果较精确,可以选用二次指数平滑法的研究结果为股票投资策略的制定提供参考。 展开更多
关键词 上证指数 指数平滑 时间序列分析 rbf神经网络预测
下载PDF
Crashworthiness optimization design of foam-filled tapered decagonal structures subjected to axial and oblique impacts 被引量:1
12
作者 PIRMOHAMMAD Sadjad AHMADI-SARAVANI Soheil ZAKAVI S.Javid 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2729-2745,共17页
In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures ... In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures contained inner and outer tapered tubes,and four stiffening plates connected them together.The parameter a/b corresponds to the inner tube side length to the outer tube one.In addition,the space between the inner and outer tubes was filled with polyurethane foam.After validating the finite element model generated in LS-DYNA using the results of experimental tests,crashworthiness indicators of SEA(specific energy absorption)and Fmax(peak crushing force)were obtained for the studied structures.Based on the TOPSIS calculations,the semi-foam filled decagonal structure with the ratio of a/b=0.5 demonstrated the best crashworthiness capability among the studied ratios of a/b.Finally,optimum thicknesses(t1(thickness of the outer tube),t2(thickness of the inner tube),t3(thickness of the stiffening plates))of the selected decagonal structure were obtained by adopting RBF(radial basis function)neural network and genetic algorithm. 展开更多
关键词 CRASHWORTHINESS foam-filled tapered structure axial and oblique impact rbf neural network and genetic algorithm TOPSIS technique
下载PDF
Hybrid optimization model and its application in prediction of gas emission 被引量:1
13
作者 FU Hua SHU Dan-dan +1 位作者 KANG Hai-chao YANG Yi-kui 《Journal of Coal Science & Engineering(China)》 2012年第3期280-284,共5页
According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we intro... According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we introduced a hybrid optimization strategy into a max-rain ant colony algorithm, then use this improved ant colony algorithm to estimate the scope of RBF network parameters. According to the amount of pheromone of discrete points, the authors obtained from the interval of net- work parameters, ants optimize network parameters. Finally, local spatial expansion is introduced to get further optimization of the network. Therefore, we obtain a better time efficiency and solution efficiency optimization model called hybrid improved max-min ant system (H1-MMAS). Simulation experiments, using these theory to predict the gas emission from the working face, show that the proposed method have high prediction feasibility and it is an effective method to predict gas emission. 展开更多
关键词 max-rain ant colony algorithm optimization model gas emission PREDICTION
下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
14
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(rbf neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
下载PDF
An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its apphcation 被引量:7
15
作者 Xiao-qing ZHANG Zheng-feng MING 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第11期1705-1719,共15页
Due to its simplicity and ease of use, the standard grey wolf optimizer (GWO) is attracting much attention. However, due to its imperfect search structure and possible risk of being trapped in local optima, its appl... Due to its simplicity and ease of use, the standard grey wolf optimizer (GWO) is attracting much attention. However, due to its imperfect search structure and possible risk of being trapped in local optima, its application has been limited. To perfect the performance of the algorithm, an optimized GWO is proposed based on a mutation operator and eliminating-reconstructing mechanism (MR-GWO). By analyzing GWO, it is found that it conducts search with only three leading wolves at the core, and balances the exploration and exploitation abilities by adjusting only the parameter a, which means the wolves lose some diversity to some extent. Therefore, a mutation operator is introduced to facilitate better searching wolves, and an eliminating- reconstructing mechanism is used for the poor search wolves, which not only effectively expands the stochastic search, but also accelerates its convergence, and these two operations complement each other well. To verify its validity, MR-GWO is applied to the global optimization experiment of 13 standard continuous functions and a radial basis function (RBF) network approximation experiment. Through a comparison with other algorithms, it is proven that MR-GWO has a strong advantage. 展开更多
关键词 Swarm intelligence Grey wolf optimizer OPTIMIZATION Radial basis function network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部