期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于RBF神经网络的FADS系统及其算法研究 被引量:8
1
作者 赵磊 陆宇平 《飞机设计》 2012年第1期43-47,共5页
以典型的十字形布局的大气数据传感系统及其跨声速应用为研究对象,基于RBF神经网络,设计了新的FADS算法和故障检测处理方法。将测压点按不同功能进行精细的划分和组合,形成更加精简、目的性更强且相互独立的RBF网络处理子模块,利用各子... 以典型的十字形布局的大气数据传感系统及其跨声速应用为研究对象,基于RBF神经网络,设计了新的FADS算法和故障检测处理方法。将测压点按不同功能进行精细的划分和组合,形成更加精简、目的性更强且相互独立的RBF网络处理子模块,利用各子网络模块提供的冗余特性,使用基于故障特征向量表的方法,实施简单而有效的故障检测与处理。仿真验证表明,迎角与侧滑角的测量误差不大于0.5°,且故障检测是有效的。 展开更多
关键词 嵌入式大气数据传感系统 rbf神精网络 故障特征向量表
下载PDF
RBF neural network regression model based on fuzzy observations 被引量:1
2
作者 朱红霞 沈炯 苏志刚 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期400-406,共7页
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu... A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy. 展开更多
关键词 radial basis function neural network rbfNN) fuzzy membership function imprecise observation regression model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部