期刊文献+
共找到4,394篇文章
< 1 2 220 >
每页显示 20 50 100
基于RBF神经网络的光伏并网系统自适应等效建模方法
1
作者 张姝 陈豪 肖先勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第4期77-86,共10页
针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应... 针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应波形的检测判据。然后,构建了以电压-频率扰动为输入,有功功率和无功功率为输出的光伏并网系统RBF神经网络模型。最后,在Matlab/Simulink中搭建了光伏并网系统模型,并将其接入IEEE14节点配电网进行仿真验证。结果表明,构建的光伏并网自适应等效模型能够有效辨识电压频率给定控制、有功无功给定控制、下垂控制策略类型,能够准确反映光伏并网系统在不同电压、频率扰动下的有功功率、无功功率的动态响应特性。 展开更多
关键词 光伏并网系统 等效建模 逆变器控制 电压-频率扰动 rbf神经网络
下载PDF
基于自适应RBF神经网络具有模型不确定性的四旋翼无人机指定时间预设性能控制方法
2
作者 张园 郑鸿基 +3 位作者 刘海涛 韦丽娇 沈德战 赵振华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期64-73,共10页
四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立... 四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立,并且在执行任务过程中存在外部未知扰动问题,提出了一种基于指定时间预设性能控制方法,将四旋翼无人机的轨迹跟踪问题转换为对位置子系统和姿态子系统的期望指令跟踪问题;其次,在设计控制器过程中,为了解决“微分爆炸”问题产生的滤波器误差,引入一种新型滤波误差补偿方法,通过RBF神经网络逼近外部未知扰动,并将预测结果补偿给控制器以提高轨迹跟踪的鲁棒性。最后,应用仿真模拟方法验证无人机控制系统稳定性和性能优势,通过飞行试验验证,微风聚拢环境下实际飞行轨迹与仿真模拟结果趋于一致,自主轨迹跟踪起降位置偏差小于1 cm,证明了所提出算法的有效性。 展开更多
关键词 四旋翼无人机 rbf神经网络 轨迹跟踪控制 预设性能约束 模型不确定性
下载PDF
基于IPSO-RBF神经网络的西北内陆河流域突发水污染风险评估
3
作者 靳春玲 蔡惠春 +2 位作者 贡力 田亮 李战江 《环境科学与技术》 CAS CSCD 北大核心 2024年第9期120-127,共8页
突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模... 突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模型(RBF)构建突发水污染风险评价模型。为进一步保证模型精度,采用改进惯性权重因子和学习因子的粒子群算法(IPSO)对神经网络模型参数进行优化,建立IPSO-RBF神经网络西北内陆河突发水污染风险评价模型,并运用该模型对石羊河流域武威段2017-2022年突发水污染进行风险等级评价。结果显示,石羊河流域武威段突发水污染2017-2019年风险等级为Ⅱ级,2020-2022年风险等级为Ⅲ级,结果与熵权-TOPSIS法一致,与流域治理情况相符。该研究成果有利于提升石羊河流域突发水污染的防控水平与应急处置能力,对于西北内陆河流域水资源管理以及祁连山生态保护具有重要意义。 展开更多
关键词 突发水污染 风险评估 rbf神经网络 IPSO算法 内陆河流域
下载PDF
基于混合算法下RBF神经网络的执行机构非线性特性在线辨识与补偿
4
作者 刘鑫屏 陈艺文 董子健 《动力工程学报》 CAS CSCD 北大核心 2024年第5期792-801,共10页
针对控制系统中执行机构非线性特性在线辨识及补偿问题,研究了一种基于变步长核最小均方(SVSKLMS)和遗传算法结合的混合径向基(VHRBF)神经网络。利用径向基(RBF)神经网络不依赖于精确的数学模型即可得到被控对象信息的特点,建立了控制... 针对控制系统中执行机构非线性特性在线辨识及补偿问题,研究了一种基于变步长核最小均方(SVSKLMS)和遗传算法结合的混合径向基(VHRBF)神经网络。利用径向基(RBF)神经网络不依赖于精确的数学模型即可得到被控对象信息的特点,建立了控制系统执行机构的非线性特性模型;为解决传统RBF神经网络辨识性能差的问题,使用遗传算法(GA)对神经网络的中心向量和方差进行优化,利用SVSKLMS算法对RBF神经网络模型中的权重进行优化,进而得到最佳的RBF神经网络。基于VHRBF神经网络及其逆模型补偿器对执行机构非线性特性进行在线辨识及补偿。仿真结果表明:与其他算法训练下的RBF神经网络相比,所提出的VHRBF神经网络能够精确辨识并补偿执行机构的非线性特性,并且具有更快的收敛速度、更优的收敛性能。 展开更多
关键词 rbf神经网络 在线辨识与补偿 执行机构 非线性特性
下载PDF
基于NSGA-Ⅱ与RBF神经网络的DPF结构参数优化
5
作者 贾德文 郭岩琦 +2 位作者 雷基林 毕玉华 聂学选 《中国工程机械学报》 北大核心 2024年第1期1-6,共6页
为降低某型号柴油机颗粒捕集器(DPF)在运行过程中的流动阻力,并使其保持较高的捕集效率。采用试验设计方法抽取代表性样本集,并分析影响因素对DPF捕集性能影响的显著性。利用径向基函数(RBF)神经网络构建所选变量与目标函数映射关系代... 为降低某型号柴油机颗粒捕集器(DPF)在运行过程中的流动阻力,并使其保持较高的捕集效率。采用试验设计方法抽取代表性样本集,并分析影响因素对DPF捕集性能影响的显著性。利用径向基函数(RBF)神经网络构建所选变量与目标函数映射关系代理模型,并结合第二代非劣排序遗传算法(NSGA-Ⅱ)与结合熵权的优劣解距离排序法(TOPSIS)得到关于目标函数的一组最优解。结果表明:该型号DPF平均压降降低了14.58%,且DPF平均捕集效率保持99%以上。 展开更多
关键词 柴油机颗粒捕集器 多目标优化 捕集性能 rbf神经网络 NSGA-Ⅱ遗传算法
下载PDF
基于模糊RBF神经网络PI控制的塑料薄膜收卷张力控制系统研究
6
作者 张琴 王保升 方建士 《制造业自动化》 2024年第8期63-68,共6页
介绍了吹塑机收卷张力控制系统模型,建立收卷张力数学模型并得出影响塑料薄膜收卷张力的主要因素。针对常规PID在薄膜收卷张力控制中的缺陷,提出了基于模糊RBF神经网络PI控制的薄膜张力控制方法,模糊RBF神经网络参数的初始值先通过改进... 介绍了吹塑机收卷张力控制系统模型,建立收卷张力数学模型并得出影响塑料薄膜收卷张力的主要因素。针对常规PID在薄膜收卷张力控制中的缺陷,提出了基于模糊RBF神经网络PI控制的薄膜张力控制方法,模糊RBF神经网络参数的初始值先通过改进的遗传算法进行优化,加快误差的收敛速度。该控制方法既能利用模糊控制的非线性控制作用,又能利用神经网络的自学能力,实现PI控制器参数实时自整定的要求。仿真结果表明该系统响应适度快、超调小、抗干扰性强,具有优良的控制效果。 展开更多
关键词 张力控制 模糊rbf神经网络 遗传算法 PI控制 仿真
下载PDF
基于GA的RBF神经网络气液两相流持液率预测模型优化
7
作者 廖锐全 李龙威 +2 位作者 王伟 马斌 潘元 《长江大学学报(自然科学版)》 2024年第2期91-100,共10页
为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色... 为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色关联度分析(GRA)对收集的实验数据进行处理,优选出最优模型特征,同时结合遗传算法确定了RBF神经网络结构参数。基于室内实验数据进行训练,并与常用于持液率预测的反向传播(BP)神经网络、GA-BP神经网络及RBF神经网络进行对比,评估了模型的准确性及可行性。结果表明:GA-RBF神经网络模型均方误差为0.0017,均方根误差为0.0416,平均绝对误差为0.0281,拟合度为0.9483。相较于其他神经网络模型,该预测模型表现出更高的计算精度和更强的泛化能力。 展开更多
关键词 持液率 气液两相流 rbf神经网络 遗传算法 数据清洗
下载PDF
基于RBF神经网络滑模控制的卷纸纠偏系统
8
作者 张继红 《中国造纸学报》 CAS CSCD 北大核心 2024年第1期107-113,共7页
设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和... 设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和速度跟踪误差均较小。 展开更多
关键词 卷纸 纠偏控制 rbf神经网络 滑模控制 MATLAB/SIMULINK 动态性能
下载PDF
基于MI-PSO-RBF神经网络的铁路客货运量预测研究
9
作者 薛锋 吴林鸿 +1 位作者 汪雯文 周琳 《铁道运输与经济》 北大核心 2024年第9期123-135,共13页
准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选... 准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选取相关指标,利用互信息素法对指标进行筛选,构建影响因素指标体系。基于该指标体系,运用粒子群算法优化的RBF神经网络模型分别对铁路客货运量进行预测,并与传统的BP神经网络、RBF神经网络预测模型进行比较。结果显示,经过参数调整优化后的MI-PSO-RBF神经网络在铁路客运量及货运量的预测精度方面表现最佳,测试集R2分别达到了0.9481与0.9911,具有较高的精度及泛化能力,表明该组合预测模型能够进一步提升神经网络模型预测铁路客货运量精确度。 展开更多
关键词 客货运量预测 互信息素 粒子群算法 rbf神经网络 影响因素法
下载PDF
基于RBF神经网络的汽车内饰皮革智能切割系统设计
10
作者 贺丽娟 《中国皮革》 CAS 2024年第10期12-15,共4页
随着汽车用皮革的迅速发展,开发一套满足汽车内饰皮革生产需求的智能切割系统具有重要意义。本文简述了汽车内饰皮革切割系统的发展,构建了基于径向基函数(Radial Basis Function,RBF)神经网络的汽车内饰皮革智能切割系统,介绍了系统主... 随着汽车用皮革的迅速发展,开发一套满足汽车内饰皮革生产需求的智能切割系统具有重要意义。本文简述了汽车内饰皮革切割系统的发展,构建了基于径向基函数(Radial Basis Function,RBF)神经网络的汽车内饰皮革智能切割系统,介绍了系统主要硬件配置选型和软件的设计,提出了基于RBF神经网络PID(Proportional Integral Derivative,比例-积分-微分)控制算法;通过搭建试验平台,测试汽车内饰皮革智能切割系统的可行性、切割精度与效率。结果表明,该系统能够较好地满足汽车内饰皮革切割方面的需求。 展开更多
关键词 rbf神经网络 PID控制 汽车内饰 皮革 切割系统
下载PDF
一般大气环境下钢筋锈蚀深度的RBF神经网络预测模型研究 被引量:1
11
作者 王胜利 刘华 +2 位作者 郑山锁 董淑卿 黄瑜 《地震工程学报》 CSCD 北大核心 2024年第2期269-277,共9页
钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数... 钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数敏感性分析。研究结果表明:与数值模型相比,RBF神经网络对钢筋锈蚀深度预测效率与精度更高,能够有效映射各影响参数与钢筋锈蚀深度之间复杂的非线性关系。参数敏感性分析结果显示,钢筋混凝土表面锈胀裂缝宽度对钢筋锈蚀深度影响最大,钢筋直径、保护层厚度与钢筋直径之比和混凝土抗压强度等其他因素影响次之。所得模型可用于工程检测中钢筋锈蚀程度预测与RC构筑物剩余服役寿命评估。 展开更多
关键词 钢筋混凝土 钢筋锈蚀 rbf神经网络 锈蚀深度预测 敏感性分析
下载PDF
基于多目标灰狼优化算法与RBF神经网络的真空灭弧室触头结构优化设计 被引量:1
12
作者 丁璨 王周琳 +1 位作者 袁召 李江 《高电压技术》 EI CAS CSCD 北大核心 2024年第2期543-550,共8页
在真空灭弧室触头开断过程中,合适的磁场分布有利于提高其开断性能;在合闸过程中,动、静触头间存在的电动斥力会导致触头出现弹跳现象。针对以上问题,首先建立了带铁芯式杯状纵磁触头的三维模型,进行了磁场分布与电动力的计算;为了进一... 在真空灭弧室触头开断过程中,合适的磁场分布有利于提高其开断性能;在合闸过程中,动、静触头间存在的电动斥力会导致触头出现弹跳现象。针对以上问题,首先建立了带铁芯式杯状纵磁触头的三维模型,进行了磁场分布与电动力的计算;为了进一步提高触头的性能,然后构建了以触头片开槽长度、开槽宽度、径向偏转角度、杯座斜槽高度及单个斜槽上下旋转角度为输入,电流峰值时刻触头间隙中心平面纵向磁场强度最大值、过零时刻中心点处磁滞时间、合闸时动静触头间的电动斥力分别为输出的RBF神经网络模型;最后结合RBF神经网络模型与多目标灰狼优化算法(MOGWO)对触头结构进行了优化。结果表明:与初始结构参数相比,当触头片开槽长度为19.74mm、宽度为3.94mm、径向偏转角为19.9°、杯座斜槽高度为18.0mm、斜槽上下旋转角为119.2°时,触头具有更好的磁场分布特性,且动、静触头间的电动斥力明显减小,有利于提高触头的工作性能。 展开更多
关键词 真空灭弧室触头 电动斥力 rbf神经网络 磁场特性 多目标灰狼优化算法
下载PDF
基于LMI和扰动观测器的电动伺服系统RBF神经网络控制 被引量:1
13
作者 李晓飞 范元勋 许鹿辉 《机械制造与自动化》 2024年第1期113-117,共5页
为了提高电动伺服系统的加载力跟踪精度,基于线性矩阵不等式(LMI)设计扰动观测器和控制器。针对系统中的非线性因素,采用RBF神经网络逼近系统的数学模型;在建立系统跟踪目标模型的基础上,根据LMI设计扰动观测器对控制器进行多余力的补偿... 为了提高电动伺服系统的加载力跟踪精度,基于线性矩阵不等式(LMI)设计扰动观测器和控制器。针对系统中的非线性因素,采用RBF神经网络逼近系统的数学模型;在建立系统跟踪目标模型的基础上,根据LMI设计扰动观测器对控制器进行多余力的补偿,利用李雅普诺夫函数证明扰动观测器和控制器的收敛;在MATLAB/Simulink中搭建仿真模型,分析扰动观测器和RBF神经网络在不同工况下对系统相应量的精准估计,且误差均满足所设定的性能指标,同时与PID控制相比较,证明所提控制策略的控制性能更优。 展开更多
关键词 电动伺服系统 线性矩阵不等式 扰动观测器 rbf神经网络
下载PDF
基于改进型RBF神经网络的直接数字频率合成器设计
14
作者 倪崧顺 张长春 +1 位作者 王静 张翼 《固体电子学研究与进展》 CAS 2024年第2期149-156,共8页
提出了一种基于改进型径向基函数(Radial basis function,RBF)神经网络的高性能直接数字频率合成器,相比于传统的直接数字频率合成器避免了相位截断误差并降低了资源消耗。为了进一步提高RBF神经网络的训练效率及稳定性,提出一种改进型... 提出了一种基于改进型径向基函数(Radial basis function,RBF)神经网络的高性能直接数字频率合成器,相比于传统的直接数字频率合成器避免了相位截断误差并降低了资源消耗。为了进一步提高RBF神经网络的训练效率及稳定性,提出一种改进型的RBF神经网络训练算法。该算法在粗调阶段,利用K-means++算法快速确定初始激活函数中心,使激活函数中心分布更加合理;在细调阶段则采用L-BFGS-B算法,对粗调阶段得到的最佳中心进行精细调整,进一步降低输出误差。通用FPGA平台的实验结果表明,基于改进型RBF神经网络的直接数字频率合成器当输出时钟频率为1.53 MHz时,无杂散动态范围为85.26 dB,相位噪声为-90.50 dBc/Hz@100 kHz,且无需占用额外ROM资源。 展开更多
关键词 直接数字频率合成器 rbf神经网络 相位截断误差 现场可编程门阵列
下载PDF
基于RBF神经网络与SLAM的全捷联导引头定位研究
15
作者 王嘉楠 彭晓乐 王之昊 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第7期134-141,共8页
针对全捷联导引头探测器和IMU传递函数的需要进行相位匹配的问题,利用在线学习的RBF神经网络进行相位匹配算法设计,利用Z变换进行离散化处理;针对全捷联单模和多模导引头的相位匹配算法进行了设计与分析,并通过Matlab/Simulink联合仿真... 针对全捷联导引头探测器和IMU传递函数的需要进行相位匹配的问题,利用在线学习的RBF神经网络进行相位匹配算法设计,利用Z变换进行离散化处理;针对全捷联单模和多模导引头的相位匹配算法进行了设计与分析,并通过Matlab/Simulink联合仿真实验验证了算法的效果。同时,结合SLAM系统进行同时定位矫正,提升导弹的定位精度与全捷联导引头的导引准确度。 展开更多
关键词 全捷联导引头 相位匹配 rbf神经网络 在线学习 SLAM系统
下载PDF
改进RBF神经网络在智能机器人轨迹规划中的研究
16
作者 刘翔 王开科 李菲 《机械设计与制造》 北大核心 2024年第4期90-94,共5页
针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法。通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器... 针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法。通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器人的轨迹。通过仿真将与未改进前的轨迹规划算法进行比较,验证该方法的优越性。结果表明,与改进前的规划算法相比,文中规划方法误差小,适应性强,能够满足工业机器人轨迹规划的预期要求。为工业机器人轨迹规划方法的发展提供了一定的参考。 展开更多
关键词 工业机器人 轨迹规划 rbf神经网络 遗传算法 关节轨迹
下载PDF
基于数据同化方法修正RBF神经网络的高维气动力建模预测
17
作者 张迎 张鑫 +1 位作者 张卫国 邓子辰 《气体物理》 2024年第3期46-54,共9页
通过数据同化方法修正径向基函数(radial basis function,RBF)神经网络,以提高高维气动力的建模精度。通过在传统RBF神经网络的核函数中引修正量γ,使用EnKF滤波数据同化算法修正该矫正因子,并将其应用于CRA309旋翼翼型的高维气动力建... 通过数据同化方法修正径向基函数(radial basis function,RBF)神经网络,以提高高维气动力的建模精度。通过在传统RBF神经网络的核函数中引修正量γ,使用EnKF滤波数据同化算法修正该矫正因子,并将其应用于CRA309旋翼翼型的高维气动力建模预测中。结果发现数据同化方法采用非侵入的方式,在不破坏神经网络整体架构的情况下仅对核函数的矫正因子进行修正,大幅减少优化参数与变量,显著提升了RBF神经网络的建模精度和效率。将修正后的RBF神经网络模型应用于高维气动力建模中,用仿真数据替代对气动力参数进行预测。设计结果验证了预测模型的可行性,在风洞试验数据较少的情况下对提高试验数据的利用效率具有一定的工程实用价值。 展开更多
关键词 rbf神经网络 数据同化 气动力建模 泛化能力
下载PDF
联合图像最优特征提取及改进RBF神经网络的苹果质量估计 被引量:1
18
作者 赵敏 王成荣 李苒 《食品与机械》 CSCD 北大核心 2024年第2期125-130,183,共7页
目的:以阿克苏苹果为例,设计一种联合图像最优特征提取和改进RBF神经网络学习的苹果质量估计方法,以克服人工分级称重成本高、误差大的缺陷。方法:首先,建立苹果图像采集系统,得到苹果前景图像信息;其次,设计苹果图像特征集合最佳子集... 目的:以阿克苏苹果为例,设计一种联合图像最优特征提取和改进RBF神经网络学习的苹果质量估计方法,以克服人工分级称重成本高、误差大的缺陷。方法:首先,建立苹果图像采集系统,得到苹果前景图像信息;其次,设计苹果图像特征集合最佳子集提取策略,将最佳子集提取过程转化为目标函数优化问题,并利用改进的离散蝗虫优化算法进行求解,从而得到最佳苹果图像特征子集;最后,构建基于RBF神经网络学习的苹果质量估计模型,将最佳特征子集作为网络输入,并采用蝗虫优化算法优化配置RBF神经网络超参数,从而实现对苹果质量的有效估计。结果:所提苹果质量估计方法精度更高,质量估计值平均相对误差率为1.23%。结论:该方法可以有效实现苹果质量预估,也能够推广应用到其他类似轴对称形状的水果质量估计。 展开更多
关键词 苹果 图像处理 特征提取 rbf神经网络 蝗虫优化算法 质量估计 精度
下载PDF
四旋翼飞行器的RBF神经网络鲁棒自适应控制
19
作者 马振伟 白浩 +1 位作者 陈洪波 王劲博 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1620-1628,共9页
针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全... 针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全局一致最终有界的问题,实现了控制精度和鲁棒性的双重提升。所设计的控制器由在近似域内工作的神经网络控制器和在近似域外工作的鲁棒控制器组成。引入一种新型切换函数来实现两者之间的平滑切换,以保证闭环系统的所有信号是全局一致最终有界的。利用Lyapunov函数和Barbalat引理严格证明了非线性四旋翼飞行器系统的稳定性。仿真表明,所设计的控制器在模型不确定性和有界外部扰动下对参考轨迹依旧保持良好的跟踪性能,且跟踪误差趋近于零。 展开更多
关键词 四旋翼飞行器 rbf神经网络 鲁棒自适应控制 平滑切换函数 全局一致最终有界
下载PDF
应用PSO-RBF神经网络预测太阳能PV/T系统的热、电性能 被引量:1
20
作者 何迪 王聪聪 +4 位作者 陈红兵 孙俊辉 高雪宁 王传岭 马卓越 《可再生能源》 CAS CSCD 北大核心 2024年第4期455-463,共9页
为准确预测太阳能光伏光热(Solar Photovoltaic/Thermal,PV/T)系统的热、电性能,文章利用PSO(Particle Swarm Optimization)算法优化了RBF(Radial Basis Function)神经网络,并基于此方法建立了太阳能PV/T系统性能的仿真预测模型,与基于... 为准确预测太阳能光伏光热(Solar Photovoltaic/Thermal,PV/T)系统的热、电性能,文章利用PSO(Particle Swarm Optimization)算法优化了RBF(Radial Basis Function)神经网络,并基于此方法建立了太阳能PV/T系统性能的仿真预测模型,与基于未优化RBF神经网络建立的预测模型进行了对比分析。同时,搭建了太阳能PV/T实验平台,通过云平台采集实验数据用于上述模型。研究结果表明:使用PSO算法优化后的RBF神经网络模型相较于未优化模型预测精度提高了20%,预测稳定性提高了30%,拟合优度R值有所提升。基于PSO-RBF神经网络建立的预测模型可精确预测太阳能PV/T系统的热、电性能。 展开更多
关键词 PV/T rbf神经网络 PSO算法 模拟预测
下载PDF
上一页 1 2 220 下一页 到第
使用帮助 返回顶部