Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ...Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.展开更多
Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications ha...Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant information for design tasks linked to the development of active devices based on this kind of smart material. The non-linear response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be a precise simulation tool for describing IPMC response in dry environments.展开更多
Measuring the complex permittivity of ultrathin,flexible materials with a high loss tangent poses a substantial challenge with precision using conventional methods,and verifying the accuracy of test results remains di...Measuring the complex permittivity of ultrathin,flexible materials with a high loss tangent poses a substantial challenge with precision using conventional methods,and verifying the accuracy of test results remains difficult.In this study,we introduce a methodology based on a back-propagation artificial neural network(ANN)to extract the complex permittivity of paper-based composites(PBCs).PBCs are ultrathin and flexible materials exhibiting considerable complex permittivity and dielectric loss tangent.Given the absence of mature measurement methods for PBCs and a lack of sufficient data for ANN training,a mapping relationship is initially established between the complex permittivity of honeycomb-structured microwave-absorbing materials(HMAMs,composed of PBCs)and that of PBCs using simulated data.Leveraging the ANN model,the complex permittivity of PBCs can be extracted from that of HMAMs obtained using standard measurement.Subsequently,two published methods are cited to illustrate the accuracy and advancement of the results obtained using the proposed approach.Additionally,specific error analysis is conducted,attributing discrepancies to the conductivity of PBCs,the homogenization of HMAMs,and differences between the simulation model and actual objects.Finally,the proposed method is applied to optimize the cell length parameters of HMAMs for enhanced absorption performance.The conclusion discusses further improvements and areas for extended research.展开更多
Basalt fiber reinforcement in polymer matrix composites is becoming more and more popular because of its environmental friendliness and mechanical qualities that are comparable to those of synthetic fibers.Basalt fibe...Basalt fiber reinforcement in polymer matrix composites is becoming more and more popular because of its environmental friendliness and mechanical qualities that are comparable to those of synthetic fibers.Basalt fiber strengthened vinyl ester matrix polymeric composite with filler addition of nano-and micro-sized silicon carbide(SiC)element spanning from 2 weight percent to 10 weight percent was studied for its mechanical and wear properties.The application of Artificial Neural Network(ANN)to correlate the filler addition composition for optimum mechanical properties is required due to the non-linear mechanical and tribological features of composites.The stuffing blend and composition of the composite are optimized using the hybrid model and Genetic Algorithm(GA)to maximize the mechanical and wear-resistant properties.The predicted and tested ANN–GA optimal values obtained for the composite combination had a tensile,flexural,impact resilience,hardness and wear properties of 202.93 MPa,501.67 MPa,3.460 J/s,43 HV and 0.196 g,respectively,for its optimum combination of filler and reinforcement.It can be noted that the nano-sized SiC filler particle enhances most of the properties of the composite which diversifies its applications.The predicted mechanical and wear values of the developed ANN–GA model were in closer agreement with the experimental values which validate the model.展开更多
In this paper,an adaptive composite anti-disturbance control of heavy haul trains(HHTs)is proposed.First,the mechanical principle and characteristics of couplers are analysed and the longitudinal multi-particles nonli...In this paper,an adaptive composite anti-disturbance control of heavy haul trains(HHTs)is proposed.First,the mechanical principle and characteristics of couplers are analysed and the longitudinal multi-particles nonlinear dynamic model of HHTs is established,which can satisfy that the forces of vehicles in different positions are different.Subsequently,a radial basis function network(RBFNN)is employed to approximate the uncertainties of HHTs,and a nonlinear disturbance observer(NDO)is constructed to estimate the approximation error and external disturbances.To indicate and improve the approximation accuracy,a serial-parallel identification model of HHTs is constructed to generate a prediction error,and an adaptive composite anti-disturbance control scheme is developed,where the prediction error and tracking error are employed to update RBFNN weights and an auxiliary variable of NDO.Finally,the feasibility and effectiveness of the proposed control scheme are demonstrated through the Lyapunov theory and simulation experiments.展开更多
An improved neural network model was developed for prediction of mechanical properties in the de-sign and development of new types of magnesium alloys by refining the types of input variables and using a more reasonab...An improved neural network model was developed for prediction of mechanical properties in the de-sign and development of new types of magnesium alloys by refining the types of input variables and using a more reasonable algorithm. The results showed that the improved model apparently decreased the prediction errors, and raised the accuracy of the prediction results. Better preprocessing parame-ters were found to be [0.15, 0.90] for the tensile strength, [0.1, 0.9] for the yield strength, and [0.15, 0.90] for the elongation. When the above parameters were used, the relativity for predicition of strength was bigger than 0.95. By using improved ANN analysis, more reasonable process parameters and compo- sition could be obtained in some magnesium alloys without addition of strontoum.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3707803)the National Natural Science Foundation of China(Grant Nos.12072179 and 11672168)+1 种基金the Key Research Project of Zhejiang Lab(Grant No.2021PE0AC02)Shanghai Engineering Research Center for Inte-grated Circuits and Advanced Display Materials.
文摘Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.
文摘Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant information for design tasks linked to the development of active devices based on this kind of smart material. The non-linear response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be a precise simulation tool for describing IPMC response in dry environments.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3700104).
文摘Measuring the complex permittivity of ultrathin,flexible materials with a high loss tangent poses a substantial challenge with precision using conventional methods,and verifying the accuracy of test results remains difficult.In this study,we introduce a methodology based on a back-propagation artificial neural network(ANN)to extract the complex permittivity of paper-based composites(PBCs).PBCs are ultrathin and flexible materials exhibiting considerable complex permittivity and dielectric loss tangent.Given the absence of mature measurement methods for PBCs and a lack of sufficient data for ANN training,a mapping relationship is initially established between the complex permittivity of honeycomb-structured microwave-absorbing materials(HMAMs,composed of PBCs)and that of PBCs using simulated data.Leveraging the ANN model,the complex permittivity of PBCs can be extracted from that of HMAMs obtained using standard measurement.Subsequently,two published methods are cited to illustrate the accuracy and advancement of the results obtained using the proposed approach.Additionally,specific error analysis is conducted,attributing discrepancies to the conductivity of PBCs,the homogenization of HMAMs,and differences between the simulation model and actual objects.Finally,the proposed method is applied to optimize the cell length parameters of HMAMs for enhanced absorption performance.The conclusion discusses further improvements and areas for extended research.
文摘Basalt fiber reinforcement in polymer matrix composites is becoming more and more popular because of its environmental friendliness and mechanical qualities that are comparable to those of synthetic fibers.Basalt fiber strengthened vinyl ester matrix polymeric composite with filler addition of nano-and micro-sized silicon carbide(SiC)element spanning from 2 weight percent to 10 weight percent was studied for its mechanical and wear properties.The application of Artificial Neural Network(ANN)to correlate the filler addition composition for optimum mechanical properties is required due to the non-linear mechanical and tribological features of composites.The stuffing blend and composition of the composite are optimized using the hybrid model and Genetic Algorithm(GA)to maximize the mechanical and wear-resistant properties.The predicted and tested ANN–GA optimal values obtained for the composite combination had a tensile,flexural,impact resilience,hardness and wear properties of 202.93 MPa,501.67 MPa,3.460 J/s,43 HV and 0.196 g,respectively,for its optimum combination of filler and reinforcement.It can be noted that the nano-sized SiC filler particle enhances most of the properties of the composite which diversifies its applications.The predicted mechanical and wear values of the developed ANN–GA model were in closer agreement with the experimental values which validate the model.
基金This research was supported by the National Natural Science Foundation of China(Grants No.U2034211 and 61963029)the Jiangxi Provincial Natural Science Foundation(Grants No.20232ACE01013 and 20232ACB202007)。
文摘In this paper,an adaptive composite anti-disturbance control of heavy haul trains(HHTs)is proposed.First,the mechanical principle and characteristics of couplers are analysed and the longitudinal multi-particles nonlinear dynamic model of HHTs is established,which can satisfy that the forces of vehicles in different positions are different.Subsequently,a radial basis function network(RBFNN)is employed to approximate the uncertainties of HHTs,and a nonlinear disturbance observer(NDO)is constructed to estimate the approximation error and external disturbances.To indicate and improve the approximation accuracy,a serial-parallel identification model of HHTs is constructed to generate a prediction error,and an adaptive composite anti-disturbance control scheme is developed,where the prediction error and tracking error are employed to update RBFNN weights and an auxiliary variable of NDO.Finally,the feasibility and effectiveness of the proposed control scheme are demonstrated through the Lyapunov theory and simulation experiments.
基金Supported by the National Natural Science Foundation of China (Grant No. 50725413)the National Basic Research Program of China ("973" Project) (Grant No. 2007CB613704)the National Key Technologies R&D Program of China (Grant No. 2006BAE04B09-7)
文摘An improved neural network model was developed for prediction of mechanical properties in the de-sign and development of new types of magnesium alloys by refining the types of input variables and using a more reasonable algorithm. The results showed that the improved model apparently decreased the prediction errors, and raised the accuracy of the prediction results. Better preprocessing parame-ters were found to be [0.15, 0.90] for the tensile strength, [0.1, 0.9] for the yield strength, and [0.15, 0.90] for the elongation. When the above parameters were used, the relativity for predicition of strength was bigger than 0.95. By using improved ANN analysis, more reasonable process parameters and compo- sition could be obtained in some magnesium alloys without addition of strontoum.