Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in diffe...Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in different fields.In allusion to this,an elasto-plastic constitutive model based on clustering radial basis function neural network(BC-RBFNN) was proposed for moderate sandy clay according to its properties.Firstly,knowledge base was established on triaxial compression testing data;then the model was trained,learned and emulated using knowledge base;finally,predicting results of the BC-RBFNN model were compared and analyzed with those of other intelligent model.The results show that the BC-RBFNN model can alter the training and learning velocity and improve the predicting precision,which provides possibility for engineering practice on demanding high precision.展开更多
为解决航空发动机在出现性能退化时模型精度下降的问题,提出了一种基于在线径向基函数神经网络(online radial basis function neural network,Online-RBFNN)的航空发动机动态模型。采用连续K均值(K-Means)算法和FTRL(follow the regula...为解决航空发动机在出现性能退化时模型精度下降的问题,提出了一种基于在线径向基函数神经网络(online radial basis function neural network,Online-RBFNN)的航空发动机动态模型。采用连续K均值(K-Means)算法和FTRL(follow the regularized leader)在线学习算法,对典型RBFNN进行改进,实现在线学习功能。以某型涡扇发动机正常退化数据为原始样本,建立低压涡轮机(low pressure turbine,LPT)出口总温度动态模型,并与其他多种算法建立的模型进行对比,动态模型的平均绝对误差、均方根误差和校正决定系数分别为0.59、1.7和0.9978;将所建立的动态模型在同型号但不同飞行包线区域、不同退化形式的发动机运行数据上进行测试,模型输出结果的误差可分别控制在[-9,8]K和[-10,9]K范围内。研究结果表明,基于Online-RBFNN的动态模型能有效避免模型精度下降的问题,且具有良好的自适应能力。展开更多
基金Project(07031B) supported by the Scientific Research Fund of Central South University of Forestry and TechnologyProject(06C843) supported by the Scientific Research Fund of Hunan Provincial Education Department
文摘Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in different fields.In allusion to this,an elasto-plastic constitutive model based on clustering radial basis function neural network(BC-RBFNN) was proposed for moderate sandy clay according to its properties.Firstly,knowledge base was established on triaxial compression testing data;then the model was trained,learned and emulated using knowledge base;finally,predicting results of the BC-RBFNN model were compared and analyzed with those of other intelligent model.The results show that the BC-RBFNN model can alter the training and learning velocity and improve the predicting precision,which provides possibility for engineering practice on demanding high precision.