期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合FP-Growth和RBM的图书推荐算法研究
被引量:
4
1
作者
杨宇环
张开生
《陕西科技大学学报》
北大核心
2021年第4期156-160,共5页
为了解决传统图书推荐算法推荐准确性不高、效率低下的问题,本文提出了融合关联规则FP-Growth和受限玻尔兹曼机RBM的混合推荐算法用于图书推荐.FP-Growth算法能够处理复杂的非结构化数据,RBM协同过滤算法可以有效解决数据稀疏问题,通过...
为了解决传统图书推荐算法推荐准确性不高、效率低下的问题,本文提出了融合关联规则FP-Growth和受限玻尔兹曼机RBM的混合推荐算法用于图书推荐.FP-Growth算法能够处理复杂的非结构化数据,RBM协同过滤算法可以有效解决数据稀疏问题,通过结合两种算法组成混合推荐模型,能够弥补单一算法的不足之处,体现混合推荐模型的优势.实验结果表明,相比FP-Growth和RBM协同过滤算法,本文提出的融合算法将准确率分别提升了15.63%和7.58%,从而能够更加精准地进行图书推荐.
展开更多
关键词
图书推荐
FP-GROWTH
算法
rbm算法
协同过滤
下载PDF
职称材料
题名
融合FP-Growth和RBM的图书推荐算法研究
被引量:
4
1
作者
杨宇环
张开生
机构
陕西科技大学图书馆信息部
陕西科技大学电气与控制工程学院
出处
《陕西科技大学学报》
北大核心
2021年第4期156-160,共5页
基金
陕西省榆林市科技计划项目(CXY-2020-090)。
文摘
为了解决传统图书推荐算法推荐准确性不高、效率低下的问题,本文提出了融合关联规则FP-Growth和受限玻尔兹曼机RBM的混合推荐算法用于图书推荐.FP-Growth算法能够处理复杂的非结构化数据,RBM协同过滤算法可以有效解决数据稀疏问题,通过结合两种算法组成混合推荐模型,能够弥补单一算法的不足之处,体现混合推荐模型的优势.实验结果表明,相比FP-Growth和RBM协同过滤算法,本文提出的融合算法将准确率分别提升了15.63%和7.58%,从而能够更加精准地进行图书推荐.
关键词
图书推荐
FP-GROWTH
算法
rbm算法
协同过滤
Keywords
book recommendation
FP-Growth algorithm
rbm
algorithm
collaborative filtering
分类号
TP311.1 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合FP-Growth和RBM的图书推荐算法研究
杨宇环
张开生
《陕西科技大学学报》
北大核心
2021
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部