Given a positive Radon measure μ on R^d satisfying the linear growth condition μ(B(x,r))≤C0r^n,x∈R^d,r〉0,(1) where n is a fixed number and O〈n≤d. When d-1〈n,it is proved that if Tt,N1=0,then the correspo...Given a positive Radon measure μ on R^d satisfying the linear growth condition μ(B(x,r))≤C0r^n,x∈R^d,r〉0,(1) where n is a fixed number and O〈n≤d. When d-1〈n,it is proved that if Tt,N1=0,then the corresponding maximal Calderon-Zygmund singular integral is bounded from RBMO to itself only except that it is infinite μ-a. e. on R^d.展开更多
The boundedness in Lebesgue spaces for commutators generated by multilinear singular integrals and RMBO(μ) functions of Tolsa with non-doubling measures is obtained, provided that ∥μ∥ = ∞ and multilinear singular...The boundedness in Lebesgue spaces for commutators generated by multilinear singular integrals and RMBO(μ) functions of Tolsa with non-doubling measures is obtained, provided that ∥μ∥ = ∞ and multilinear singular integrals are bounded from L 1(μ) × L 1(μ) to L 1/2,∞(μ).展开更多
文摘Given a positive Radon measure μ on R^d satisfying the linear growth condition μ(B(x,r))≤C0r^n,x∈R^d,r〉0,(1) where n is a fixed number and O〈n≤d. When d-1〈n,it is proved that if Tt,N1=0,then the corresponding maximal Calderon-Zygmund singular integral is bounded from RBMO to itself only except that it is infinite μ-a. e. on R^d.
基金This work was partially supported by Scientific Research Fund of Hunan Provincial Education Department(Grant No.06B059)the Natural Science Foundation of Hunan Province of China(Grant No.06JJ5012)the National Natural Science Foundation of China(Grant Nos.60474070 and 10671062)
文摘The boundedness in Lebesgue spaces for commutators generated by multilinear singular integrals and RMBO(μ) functions of Tolsa with non-doubling measures is obtained, provided that ∥μ∥ = ∞ and multilinear singular integrals are bounded from L 1(μ) × L 1(μ) to L 1/2,∞(μ).