期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种复合型手势识别方法研究
被引量:
2
1
作者
韩文静
罗晓曙
杨日星
《计算机工程与应用》
CSCD
北大核心
2021年第4期108-113,共6页
针对已有卷积神经网络在手势识别过程中精度不高的问题,提出了一种双通道卷积神经网络的特征融合与动态衰减学习率相结合的复合型手势识别方法。通过两个相互独立的通道进行手势图像的特征提取,首先使用SENet(Squeeze-and-Excitation Ne...
针对已有卷积神经网络在手势识别过程中精度不高的问题,提出了一种双通道卷积神经网络的特征融合与动态衰减学习率相结合的复合型手势识别方法。通过两个相互独立的通道进行手势图像的特征提取,首先使用SENet(Squeeze-and-Excitation Networks)构成的第一通道提取全局特征,然后使用RBNet(Residual Block Networks)构成的第二通道提取局部特征,并将全局特征和局部特征进行通道维度上的融合。同时,利用动态衰减的学习率训练双通道网络模型。与其他卷积神经网络模型的对比实验结果表明,提出的复合型手势识别方法的手势识别率高,参数数量少,适用于不同手势图像数据集的识别。
展开更多
关键词
卷积神经网络(CNN)
手势识别
双通道特征融合
SENet
rbnet
下载PDF
职称材料
题名
一种复合型手势识别方法研究
被引量:
2
1
作者
韩文静
罗晓曙
杨日星
机构
广西师范大学电子工程学院
广西师范大学创新创业学院
出处
《计算机工程与应用》
CSCD
北大核心
2021年第4期108-113,共6页
基金
广西科技重大专项(桂科AA18118004)
广西研究生教育创新计划项目(XYCSZ2020056)。
文摘
针对已有卷积神经网络在手势识别过程中精度不高的问题,提出了一种双通道卷积神经网络的特征融合与动态衰减学习率相结合的复合型手势识别方法。通过两个相互独立的通道进行手势图像的特征提取,首先使用SENet(Squeeze-and-Excitation Networks)构成的第一通道提取全局特征,然后使用RBNet(Residual Block Networks)构成的第二通道提取局部特征,并将全局特征和局部特征进行通道维度上的融合。同时,利用动态衰减的学习率训练双通道网络模型。与其他卷积神经网络模型的对比实验结果表明,提出的复合型手势识别方法的手势识别率高,参数数量少,适用于不同手势图像数据集的识别。
关键词
卷积神经网络(CNN)
手势识别
双通道特征融合
SENet
rbnet
Keywords
Convolutional Neural Network(CNN)
gesture recognition
dual-channel feature fusion
SENet
rbnet
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种复合型手势识别方法研究
韩文静
罗晓曙
杨日星
《计算机工程与应用》
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部