为解决PBRF-SLAM中由于粒子退化和粒子耗尽而导致的定位失真和建图一致性差的问题,提出了基于海鸥优化和最小方差重采样的优化方法。在PRBF-SLAM的采样过程中,采样一系列辅助粒子,并利用海鸥优化算法对这些粒子进行寻优,找到估计位姿的...为解决PBRF-SLAM中由于粒子退化和粒子耗尽而导致的定位失真和建图一致性差的问题,提出了基于海鸥优化和最小方差重采样的优化方法。在PRBF-SLAM的采样过程中,采样一系列辅助粒子,并利用海鸥优化算法对这些粒子进行寻优,找到估计位姿的最优解,从而避免因陷入局部极值导致的粒子退化。在PRBF-SLAM的重采样过程中,采用最小方差重采样方法替换原先的重采样方法,充分使用辅助粒子,尽可能保证重采样后粒子的多样性。利用Intel Research Lab和ACES Building公开数据集进行SLAM仿真,结果表明优化后的算法相比Gmapping算法总体的平移误差分别降低了36.36%和41.67%,总体的旋转误差分别降低了33.33%和40%。展开更多
文摘为解决PBRF-SLAM中由于粒子退化和粒子耗尽而导致的定位失真和建图一致性差的问题,提出了基于海鸥优化和最小方差重采样的优化方法。在PRBF-SLAM的采样过程中,采样一系列辅助粒子,并利用海鸥优化算法对这些粒子进行寻优,找到估计位姿的最优解,从而避免因陷入局部极值导致的粒子退化。在PRBF-SLAM的重采样过程中,采用最小方差重采样方法替换原先的重采样方法,充分使用辅助粒子,尽可能保证重采样后粒子的多样性。利用Intel Research Lab和ACES Building公开数据集进行SLAM仿真,结果表明优化后的算法相比Gmapping算法总体的平移误差分别降低了36.36%和41.67%,总体的旋转误差分别降低了33.33%和40%。