期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
应用非负矩阵分解和RBPNN模型的掌纹识别方法 被引量:3
1
作者 尚丽 崔鸣 杜吉祥 《计算机工程与应用》 CSCD 2012年第4期199-203,共5页
提出一种基于非负矩阵分解(NMF)和径向基概率神经网络的掌纹识别方法。NFM是一种有效的图像局部特征提取算法,用于图像分类时能得到较高的识别率。考虑PolyU掌纹图像数据库,应用NMF、局部NMF(LNMF)、稀疏NMF(SNMF)和具有稀疏度约束的NMF... 提出一种基于非负矩阵分解(NMF)和径向基概率神经网络的掌纹识别方法。NFM是一种有效的图像局部特征提取算法,用于图像分类时能得到较高的识别率。考虑PolyU掌纹图像数据库,应用NMF、局部NMF(LNMF)、稀疏NMF(SNMF)和具有稀疏度约束的NMF(NMFSC)算法分别对掌纹图像进行特征提取,并对提取到的局部特征基图像进行分析对比;在特征提取的基础上,应用径向基概率神经网络(RBPNN)模型对掌纹特征进行分类,分类结果表明了RBPNN模型对掌纹特征具有较好的识别能力。实验对比结果证明了基于RBPNN的NMF掌纹识别方法在掌纹识别中的有效性,具有一定的理论研究意义和实用性。 展开更多
关键词 非负矩阵分解 局部特征提取 特征基图像 掌纹识别 径向基概率神经网络(rbpnn)分类器
下载PDF
基于非负稀疏编码和RBPNN的掌纹图像识别方法 被引量:2
2
作者 尚丽 陈杰 《苏州市职业大学学报》 2008年第1期65-69,共5页
主要探讨了一种新颖的基于非负稀疏编码(NNSC)和径向基概率神经网络(RBPNN)模型的掌纹图像识别方法。使用NNSC算法可以成功地提取掌纹图像的特征,利用RBPNN模型可以有效、快速地实现掌纹图像的分类。与RBFNN和BPNN模型相比,实验结果表明... 主要探讨了一种新颖的基于非负稀疏编码(NNSC)和径向基概率神经网络(RBPNN)模型的掌纹图像识别方法。使用NNSC算法可以成功地提取掌纹图像的特征,利用RBPNN模型可以有效、快速地实现掌纹图像的分类。与RBFNN和BPNN模型相比,实验结果表明RBPNN模型具有更高的识别率和更好的分类能力。 展开更多
关键词 非负稀疏编码(NNSC) 径向基概率网络(rbpnn) 掌纹图像 图像识别和分类
下载PDF
基于RBPNN的退化交通标志图像的识别算法 被引量:3
3
作者 李伦波 马广富 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第6期1429-1433,共5页
为了识别退化的交通标志图像,提出了一种新的特征提取算法。该算法在处理图像退化问题时,采用模糊-仿射联合不变矩直接提取图像的特征,从而避免了需要较大计算量的图像复原处理过程。在利用模糊-仿射联合不变矩作为图像特征的基础上,采... 为了识别退化的交通标志图像,提出了一种新的特征提取算法。该算法在处理图像退化问题时,采用模糊-仿射联合不变矩直接提取图像的特征,从而避免了需要较大计算量的图像复原处理过程。在利用模糊-仿射联合不变矩作为图像特征的基础上,采用递归正交最小二乘算法优化设计径向基概率神经网络分类器。仿真结果表明:模糊-仿射联合不变矩是一种有效的退化交通标志图像的特征提取算法,所设计的径向基概率神经网络分类器不仅具有精简的结构而且具有较好的推广性能。 展开更多
关键词 计算机应用 模式识别 径向基概率神经网络 交通标志 模糊-仿射联合不变矩 递归 正交最小二乘法
下载PDF
退化交通标志图像的RBPNN分类算法研究 被引量:1
4
作者 丁淑艳 宋婀娜 李伦波 《计算机仿真》 CSCD 北大核心 2010年第1期281-284,304,共5页
为了识别退化的交通标志图像,采用模糊-仿射联合不变矩直接提取图像的特征,并针对各阶模糊-仿射联合不变矩数量级差异较大问题,提出一种数量级标准化算法,避免了需要较大计算量的图像复原处理过程。同时在深入研究径向基概率神经网络的... 为了识别退化的交通标志图像,采用模糊-仿射联合不变矩直接提取图像的特征,并针对各阶模糊-仿射联合不变矩数量级差异较大问题,提出一种数量级标准化算法,避免了需要较大计算量的图像复原处理过程。同时在深入研究径向基概率神经网络的基础上,采用全局K-均值算法优化其网络结构,并将其用于交通标志图像的分类识别。仿真结果表明,模糊-仿射联合不变矩是一种有效的处理退化交通标志图像的方法,所设计的径向基概率神经网络分类器不仅具有精简的结构而且有较好分类精度和推广性能。 展开更多
关键词 径向基概率神经网络 交通标志 模糊-仿射联合不变矩
下载PDF
PSO改进RBPNN在变压器故障诊断中的应用 被引量:21
5
作者 施恂山 马宏忠 +3 位作者 张琳 李凯 许洪华 陈冰冰 《电力系统保护与控制》 EI CSCD 北大核心 2016年第17期39-44,共6页
针对概率神经网络(PNN)及遗传算法(GA)在变压器内部故障诊断中存在的不足,提出了一种基于粒子群算法(PSO)改进径向基概率神经网络(RBPNN)的故障诊断方法。首先,引入RBPNN,选取反向传播作为学习算法以及油中溶解气体含量比值作为故障特... 针对概率神经网络(PNN)及遗传算法(GA)在变压器内部故障诊断中存在的不足,提出了一种基于粒子群算法(PSO)改进径向基概率神经网络(RBPNN)的故障诊断方法。首先,引入RBPNN,选取反向传播作为学习算法以及油中溶解气体含量比值作为故障特征量。然后,由于该模型受网络结构和初值影响较大,故拟用GA、PSO和改进的PSO对网络优化并测试。通过对比分析,得出改进的PSO在确定拓扑结构、降低误差精度、加快收敛速度和提高预测准确度上更占优势的结论,同时证明了所提方法在故障诊断中的正确性和可行性。 展开更多
关键词 粒子群算法 径向基概率神经网络 反向传播 变压器 故障诊断
下载PDF
基于径向基概率神经网络的人脸识别方法 被引量:6
6
作者 柳松 王展 《计算机工程与科学》 CSCD 2006年第2期57-60,共4页
本文提出了一种基于径向基概率神经网络的人脸图像识别方法。与传统方法相比,该方法在训练效率和识别率上取得了较大的提高。
关键词 人脸识别 神经网络 rbpnn
下载PDF
径向基概率神经网络的混合结构优化算法 被引量:14
7
作者 赵温波 杨鹭怡 王立明 《系统仿真学报》 CAS CSCD 2004年第10期2175-2180,2184,共7页
使用递归正交最小二乘算法(ROLSA)优选径向基概率神经网络(RBPNN)的隐中心矢量,微遗传算法(μGA)用于求解RBPNN最优核函数控制参数,并同ROLSA相结合(ROLS-μGA)来优化RBPNN的全结构(优选最优控制参数及隐中心矢量)。实验结果表明,ROLS-... 使用递归正交最小二乘算法(ROLSA)优选径向基概率神经网络(RBPNN)的隐中心矢量,微遗传算法(μGA)用于求解RBPNN最优核函数控制参数,并同ROLSA相结合(ROLS-μGA)来优化RBPNN的全结构(优选最优控制参数及隐中心矢量)。实验结果表明,ROLS-μGA具有很好的优化效率,而且优化后的RBPNN的推广性能也没有下降。实验还验证了ROLS-μGA对径向基函数网络(RBFNN)也有很好的适用性。 展开更多
关键词 径向基概率神经网络 结构优化 递归正交最小二乘算法 微遗传算法
下载PDF
基于级联神经网络的短期负荷概率预测新方法 被引量:14
8
作者 卫志农 王丹 +1 位作者 孙国强 郑玉平 《电工技术学报》 EI CSCD 北大核心 2005年第1期95-98,共4页
针对负荷历史数据的统计特征,提出一种基于RBPN网络和RBF网络的级联神经网络预测方法。本模型将历史负荷与其相对应的影响因素进行模式分类,由最大后验概率判别准则确定待预测日影响因素的模式,并利用其对应模式样本数据进行负荷预测。... 针对负荷历史数据的统计特征,提出一种基于RBPN网络和RBF网络的级联神经网络预测方法。本模型将历史负荷与其相对应的影响因素进行模式分类,由最大后验概率判别准则确定待预测日影响因素的模式,并利用其对应模式样本数据进行负荷预测。该算法减少了训练样本的数量,提高了预测精度,最后给出的算例证明该方法是合理有效的。 展开更多
关键词 统计特征 短期负荷预测 级联网络 径向概率神经网络
下载PDF
应用径向基概率神经网络研究地震滑坡 被引量:14
9
作者 陈晓利 赵健 叶洪 《地震地质》 EI CSCD 北大核心 2006年第3期430-440,共11页
地震滑坡是一种有着严重危害的次生地震灾害形式,形成机制复杂,涉及因素较多。地震滑坡在空间上不是完全随机分布的,换言之,地震滑坡的影响因素和它的分布规律之间存在着相关性。利用径向基概率神经网络自学习的特性,通过对样本训练、检... 地震滑坡是一种有着严重危害的次生地震灾害形式,形成机制复杂,涉及因素较多。地震滑坡在空间上不是完全随机分布的,换言之,地震滑坡的影响因素和它的分布规律之间存在着相关性。利用径向基概率神经网络自学习的特性,通过对样本训练、检测,得到一个稳定可靠的模式识别网络,并用其对工作区进行潜在地震滑坡危险性区划,通过结果对比,在本例中识别精度达到89.9%以上,显示是一次有效的尝试。 展开更多
关键词 径向基概率神经网络 地震滑坡 GIS 危险性预测
下载PDF
最大绝对误差结合微遗传算法优化径向基概率神经网络 被引量:3
10
作者 赵温波 王立明 黄德双 《计算机研究与发展》 EI CSCD 北大核心 2005年第2期179-187,共9页
使用最大绝对误差算法 (MAEA)优选径向基概率神经网络 (RBPNN )隐中心矢量 ,将MAEA与求解RBPNN最优核函数控制参数的微遗传算法 (μGA)相结合 (MAE μGA)来共同实现RBPNN的全结构优化 实验结果显示 ,对比其他几种算法 ,MAE μGA优化后的... 使用最大绝对误差算法 (MAEA)优选径向基概率神经网络 (RBPNN )隐中心矢量 ,将MAEA与求解RBPNN最优核函数控制参数的微遗传算法 (μGA)相结合 (MAE μGA)来共同实现RBPNN的全结构优化 实验结果显示 ,对比其他几种算法 ,MAE μGA优化后的RBPNN结构最简 ,而且在推广能力方面略好于其他几种优化方法 另外 ,MAE 展开更多
关键词 径向基概率神经网络 结构优化 微遗传算法 最大绝对误差-微遗传算法
下载PDF
基于遗传优化径向基概率神经网络的岩性识别应用 被引量:8
11
作者 靳玉萍 李保霖 《计算机应用》 CSCD 北大核心 2013年第2期353-356,共4页
岩性识别是测井数据解释中最关键的一环,但传统的岩性识别方法解释效率慢,精度低,受人为因素影响大。为此,提出一种遗传优化径向基概率神经网络(RBPNN)的岩性识别方法。该方法融合概率神经网络(PNN)和径向基函数神经网络(RBFNN)的优势... 岩性识别是测井数据解释中最关键的一环,但传统的岩性识别方法解释效率慢,精度低,受人为因素影响大。为此,提出一种遗传优化径向基概率神经网络(RBPNN)的岩性识别方法。该方法融合概率神经网络(PNN)和径向基函数神经网络(RBFNN)的优势来构造RBPNN,采用遗传算法搜索使得RBPNN训练法误差最小的最优隐中心矢量和相匹配的核函数控制参数,优化网络结构,提高收敛速度与精度,形成全结构遗传优化的RBPNN模型。实例应用表明,基于遗传优化RBPNN的岩性识别能够达到工程实际应用的规范标准,且是可行有效的,能够为油田地质勘探领域的岩性识别提供科学的理论支持与依靠。 展开更多
关键词 岩性识别 径向基概率神经网络 遗传算法
下载PDF
一种新的退化交通标志图像的分类算法研究 被引量:2
12
作者 丁淑艳 华春梅 李伦波 《传感器与微系统》 CSCD 北大核心 2007年第8期43-47,共5页
为了识别退化的交通标志图像,提出了一种新的分类算法。该算法在处理图像的退化问题时,采用模糊—仿射不变距直接提取图像的特征而不需要图像的清晰化处理;在利用模糊—仿射不变距提取图像特征的基础上,采用递归正交最小二乘算法设计了... 为了识别退化的交通标志图像,提出了一种新的分类算法。该算法在处理图像的退化问题时,采用模糊—仿射不变距直接提取图像的特征而不需要图像的清晰化处理;在利用模糊—仿射不变距提取图像特征的基础上,采用递归正交最小二乘算法设计了一种新的径向基概率神经网络分类器。仿真结果表明:模糊—仿射不变距是一种有效的处理退化的交通标志图像的方法,所设计的径向基概率神经网络分类器不仅具有精简的结构,而且,具有较好分类和推广性能。 展开更多
关键词 交通标志 径向基概率神经网络 模糊-仿射不变距 递归正交最小二乘法
下载PDF
基于全矢谱和径向基概率神经网络的旋转机械故障诊断方法研究 被引量:2
13
作者 杨春燕 丁静 《现代制造工程》 CSCD 北大核心 2010年第1期141-144,共4页
结合全矢谱和径向基概率神经网络的优点,提出一种故障诊断的新方法,该方法是以提取全矢幅值谱的特征输入到径向基概率神经网络分类器进行故障识别。试验结果表明,该方法与传统单通道相比故障正确识别率很高,把它应用于旋转机械故障诊断... 结合全矢谱和径向基概率神经网络的优点,提出一种故障诊断的新方法,该方法是以提取全矢幅值谱的特征输入到径向基概率神经网络分类器进行故障识别。试验结果表明,该方法与传统单通道相比故障正确识别率很高,把它应用于旋转机械故障诊断是有效的。 展开更多
关键词 全矢谱 径向基概率神经网络 故障诊断 旋转机械
下载PDF
一种新的雷达辐射源识别方法 被引量:7
14
作者 韩俊 何明浩 +1 位作者 朱元清 冒燕 《电子信息对抗技术》 2008年第5期9-12,共4页
提出一种用于雷达辐射源识别的新方法。根据小波包特征(WPT)和脉冲重复间隔(PRI)的特点,将八维WPT中的第六、七个分量(Wpt6、Wpt7)以及PRI的均值和方差(mPRI、σ2PRI)四个特征参数作为雷达辐射源的识别依据,设计了径向基概率神经网络(RB... 提出一种用于雷达辐射源识别的新方法。根据小波包特征(WPT)和脉冲重复间隔(PRI)的特点,将八维WPT中的第六、七个分量(Wpt6、Wpt7)以及PRI的均值和方差(mPRI、σ2PRI)四个特征参数作为雷达辐射源的识别依据,设计了径向基概率神经网络(RBPNN)分类器。通过计算机仿真验证了新方法的可行性,与常规方法相比,不仅提高了识别准确率,识别速度也有所提高。 展开更多
关键词 雷达 辐射源识别 小波包特征 脉冲重复间隔 径向基概率神经网络
下载PDF
华南沿海潜在震源区划分——运用MATLAB径向基概率神经网络工具箱求解
15
作者 赵健 郑文涛 +1 位作者 叶洪 周庆 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第6期869-874,共6页
用MATLAB语言建立径向基概率神经网络来求解地震潜在震源区的划分问题,地震潜在震源区划分是地震危险性安全评价工作的重点,影响潜在震源区的客观因素与潜在震源区划分结果间是一种高度非线性关系,将实际问题分析为网络的模式识别,以华... 用MATLAB语言建立径向基概率神经网络来求解地震潜在震源区的划分问题,地震潜在震源区划分是地震危险性安全评价工作的重点,影响潜在震源区的客观因素与潜在震源区划分结果间是一种高度非线性关系,将实际问题分析为网络的模式识别,以华南沿海地区为例检验优化网络,结果较好地对应了中国地震烈度区划图(1990),该方法是对潜在震源区智能划分的一次有效尝试。 展开更多
关键词 潜在震源区划分 华南沿海 非线性关系 径向基概率神经网络 MATLAB
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部