Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete...Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete (hereafter, RC) structures. Recently conducted inspection results of RC bridges have reported that many of the damages or deteriorations are observed at the girder ends and abutments This is caused from the water leakage due to the aged expansion joints. In general, the cost for repairing the damaged RC structures is much higher than that for renewing the expansion joints. Therefore, to prevent these damages, we developed a new highly durable jointless system, named RC plug joint, for existing RC bridges with a bridge length less than 40 meters. The RC plug joint connects the abutment's backwall to the superstructure's deck using reinforcing steel bars and fiber reinforced concrete. The newly developed RC plug joint system can prevent water leakage and allow for a smooth ride of vehicles at the joint. This paper will explore and discuss the development of the RC plug joint, analysis of conducted investigations, and future installation methods.展开更多
文摘Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete (hereafter, RC) structures. Recently conducted inspection results of RC bridges have reported that many of the damages or deteriorations are observed at the girder ends and abutments This is caused from the water leakage due to the aged expansion joints. In general, the cost for repairing the damaged RC structures is much higher than that for renewing the expansion joints. Therefore, to prevent these damages, we developed a new highly durable jointless system, named RC plug joint, for existing RC bridges with a bridge length less than 40 meters. The RC plug joint connects the abutment's backwall to the superstructure's deck using reinforcing steel bars and fiber reinforced concrete. The newly developed RC plug joint system can prevent water leakage and allow for a smooth ride of vehicles at the joint. This paper will explore and discuss the development of the RC plug joint, analysis of conducted investigations, and future installation methods.