The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)...The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)criterion,enabled by the properties of random fluctuations and intra-grid consistency.In essence,this is a task of matching a short random sequence within a long reference,whose accuracy is mainly concerned with whether this match could be uniquely correct.In this paper,we comprehensively analyze the factors affecting the reliability of ENF matching,including the length of test recording,length of reference,temporal resolution,and Signal-to-Noise Ratio(SNR).For synthetic analysis,we incorporate the first-order AutoRegressive(AR)ENF model and propose an efficient Time-Frequency Domain noisy ENF synthesis method.Then,the reliability analysis schemes for both synthetic and real-world data are respectively proposed.Through a comprehensive study,we quantitatively reveal that while the SNR is an important external factor to determine whether timestamp verification is viable,the length of test recording is the most important inherent factor,followed by the length of reference.However,the temporal resolution has little impact on performance.Finally,a practical workflow of the ENF-based audio timestamp verification system is proposed,incorporating the discovered results.展开更多
This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the co...This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the common equation the natural frequencies of an n th order network are correlated with the n port parameters. The equation is simple and dual in form and clear in its physical meaning. The procedure of finding the solution is simplified and standardized, and it will not cause the loss of roots. The common equation would find wide use and be systematized.展开更多
Following the principle of reuse partitioning, two new frequency planning schemes are proposed, the coverage-oriented scheme and the efficiency-oriented scheme, for the cellular system with two-hop fixed relay nodes ...Following the principle of reuse partitioning, two new frequency planning schemes are proposed, the coverage-oriented scheme and the efficiency-oriented scheme, for the cellular system with two-hop fixed relay nodes (FRNs). Compared with the effficiency-oriented scheme, the coverage-oriented scheme has higher reuse distances and is developed with emphasis on the coverage, while compared with the coverage-oriented scheme, the efficiency-oriented scheme has smaller reuse distances and is developed with emphasis on the spectral efficiency. Taking uplink as an example, both simplified analysis and intensive computer simulations are presented to offer comparisons among FRN enhanced systems with the proposed schemes, with a known channel-borrowing based frequency planning scheme and the conventional cellular system without relaying. Studies show that the FRN enhanced system with the coverage-oriented scheme provides the best coverage, while that with the efficiency-oriented scheme offers the highest area spectral efficiency.展开更多
The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a c...The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a certain model with certain regularity,the FH frequency is thus predictable.In this paper,we investigate the FH frequency reconnais-sance and prediction of a non-cooperative communi-cation network by effective FH signal detection,time-frequency(TF)analysis,wavelet detection and fre-quency estimation.With the intercepted massive FH signal data,long short-term memory(LSTM)neural network model is constructed for FH frequency pre-diction.Simulation results show that our parameter es-timation methods could estimate frequency accurately in the presence of certain noise.Moreover,the LSTM-based scheme can effectively predict FH frequency and frequency interval.展开更多
High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication n...High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication network(HFCN) in this paper.First, we present the benefits and the challenges by introducing diversity technology into the existing HFCN. Secondly, to exploit the benefits fully and overcome the challenges, we propose a system structure suitable for deploying diversity technology in HFCN in large scale,based on the cloud radio access network and software defined network. Moreover, we present a general structure for the real-time updating frequency management system that plays a more important role especially when resource consuming(e.g., frequency) diversity technology is deployed. Thirdly, we investigate the key techniques enabling diversity technology deployment. Finally, we point out the future research directions to help the HFCN with diversity work more efficiently and intelligently.展开更多
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb...This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme.展开更多
We propose a new design of the high channel capacity in Mobile Ad Hoc Network that uses the dense wave-length division multiplexing wavelength enhancement, in which the increasing in channel capacity and sig-nal secur...We propose a new design of the high channel capacity in Mobile Ad Hoc Network that uses the dense wave-length division multiplexing wavelength enhancement, in which the increasing in channel capacity and sig-nal security can be provided. The increasing in number of channel can be obtained by the increasing in wavelength density, while the security is introduced by the specific wavelength filter, which is operated by the Ad Hoc node operator and link with other nodes in coverage by dedicated one-to-one in direct or relay node. The optical communication wavelength enhancement is reviewed. The advantage is that the proposed system can be implemented and used incorporating with the existed communication link in both infrastruc-ture-based and Ad Hoc networks wireless network, where the privacy can be provided, which is discussed in details.展开更多
A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and d...A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and digital data networks to be integrated together and could represent an ideal option of interconnection among scientific institutions.The compensation functions of the time and frequency transfer scheme are set at the client nodes. The complexity of the central node is thus reduced, and future expansion by the addition of further branches will be accomplished more easily.During a performance test in which the ambient temperature fluctuation is 30℃/day, timing signal dissemination stability is achieved to be approximately ±50 ps along 25-km-long fiber spools. After calibration, a timing signal synchronization accuracy of 100 ps is also realized. The proposed scheme offers an option of the construction of large-scale fiber-based frequency and time transfer networks.展开更多
Synchronization of networked phase oscillators depends essentially on the correlation between the topological structure of the graph and the dynamical property of the elements. We propose the concept of 'reduced freq...Synchronization of networked phase oscillators depends essentially on the correlation between the topological structure of the graph and the dynamical property of the elements. We propose the concept of 'reduced frequency', a measure which can quantify natural frequencies of each pair of oscillators. Then we introduce an evolving network whose linking rules are controlled by its own dynamical property. The simulation results indicate that when the linking probability positively correlates with the reduced frequency, the network undergoes a first-order phase transition. Meanwhile, we discuss the circumstance under which an explosive synchronization can be ignited. The numerical results show that the peculiar butterfly shape correlation between frequencies and degrees of the nodes contributes to an explosive synchronization transition.展开更多
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
Future networks communication scenarios by the 2030s will include notable applications are three-dimensional(3D)calls,haptics communications,unmanned mobility,tele-operated driving,bio-internet of things,and the Nanoi...Future networks communication scenarios by the 2030s will include notable applications are three-dimensional(3D)calls,haptics communications,unmanned mobility,tele-operated driving,bio-internet of things,and the Nanointernet of things.Unlike the current scenario in which megahertz bandwidth are sufficient to drive the audio and video components of user applications,the future networks of the 2030s will require bandwidths in several gigahertzes(GHz)(from tens of gigahertz to 1 terahertz[THz])to perform optimally.Based on the current radio frequency allocation chart,it is not possible to obtain such a wide contiguous radio spectrum below 90 GHz(0.09 THz).Interestingly,these contiguous blocks of radio spectrum are readily available in the higher electromagnetic spectrum,specifically in the Terahertz(THz)frequency band.The major contribution of this study is discussing the substantial issues and key features of THz waves,which include(i)key features and significance of THz frequency;(ii)recent regulatory;(iii)the most promising applications;and(iv)possible open research issues.These research topics were deeply investigated with the aim of providing a specific,synopsis,and encompassing conclusion.Thus,this article will be as a catalyst towards exploring new frontiers for future networks of the 2030s.展开更多
The field of mobility prediction has been widely investigated in the recent past,especially the reduction of the coverage radius of cellular networks,which led to an increase in hand-over events.Changing the cell cove...The field of mobility prediction has been widely investigated in the recent past,especially the reduction of the coverage radius of cellular networks,which led to an increase in hand-over events.Changing the cell coverage very frequently,for example,may lead to service disruptions if a predictive approach is not deployed in the system.Although several works examined mobility prediction in the new-generation mobile networks,all of these studies focused on studying the time features of mobility traces,and the spectral content of historical mobility patterns was not considered for prediction purposes as yet.In the present study,we propose a new approach to mobility prediction by analyzing the effects of a proper mobility sampling frequency.The proposed approach lies in the mobility analysis in the frequency domain,to extract hidden features of the mobility process.Thus,we proposed a new methodology to determine the spectral content of mobility traces(considered as signals)and,thus,the appropriate sampling frequency,which can provide numerous advantages.We considered several types of mobility models(e.g.pedestrian,urban,and vehicular),containing important details in the time and frequency domains.Several simulation campaigns were performed to observe and analyze the characteristics of mobility from real traces and to evaluate the effects of sampling frequency on the spectral content.展开更多
Femtocell networks have emerged as a key technology in residential, office building or hotspot deployments that can sig- nificantly fulfill high data demands in order to offioad indoor traffic from outdoor macro cells...Femtocell networks have emerged as a key technology in residential, office building or hotspot deployments that can sig- nificantly fulfill high data demands in order to offioad indoor traffic from outdoor macro cells. However, as one of the major challenges, inter-femtocell interference gets worse in 3D in-building scenarios because of the presence of numerous interfering sources and then needs to be considered in the early network planning phase. The indoor network planning and optimization tool suite, Ranplan Small- cell~, makes accurate prediction of indoor wireless RF signal propagation possible to guide actual indoor femtocell deployments. In this paper, a new adaptive soft frequency reuse scheme in the dense femtocell networks is proposed, where multiple dense femtocells are classified into a number of groups according to the dominant interference strength to others, then the minimum subchannels with different frequency reuse factors for these groups are determined and transmit powers of the group- ing sub-channels are adaptively adjusted based on the strength to mitigate the mutual inter- ference. Simulation results show the proposed scheme yields great performance gains in terms of the spectrum efficiency relative to the legacy soft frequency reuse and universal fre- quency reuse.展开更多
Performance analysis of an asynchronous frequency hopping packet radio network and numerical results are given. The network has mixed traffic, one type of packet needs an Acknowledgement(Ack), the other type does not ...Performance analysis of an asynchronous frequency hopping packet radio network and numerical results are given. The network has mixed traffic, one type of packet needs an Acknowledgement(Ack), the other type does not need, the background of such a network is tactical missile systems. A reasonable network model is given, based on which the effect of various parameters under multiaccess interference is investigated. The performance curves of throughput and average packet delay is given in this paper.展开更多
A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The freq...A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The frequency tuning is achieved by inserting varactor diodes between the square mesh and each unattached square patch. The square mesh is divided into two parts for biasing the varactor diodes. Full-wave numerical simulations show that a wide tuning range can be achieved by changing the capacitances of these loaded varactors. Two homo-type samples using fixed lumped capacitors are fabricated and measured using a standard waveguide measurement setup. Excellent agreement between the measured and simulated results is demonstrated.展开更多
This paper introduces the characteristics of TD-SCDMA, and analyzes some networking schemes and methods of multifrequency. For the 5 MHz frequency bandwidth, a frequency planning scheme containing three frequencies is...This paper introduces the characteristics of TD-SCDMA, and analyzes some networking schemes and methods of multifrequency. For the 5 MHz frequency bandwidth, a frequency planning scheme containing three frequencies is examined, and a simulation model is built to validate the performance of this scheme. Finally, this paper analyzes the advantages and disadvantages of the scheme, and proposes some directions for the future study of networking planning.展开更多
基金funded by National Natural Science Foundation of China(No.62272347,62072343,and 61802284)National Key Research Development Program of China(No.2019QY(Y)0206).
文摘The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)criterion,enabled by the properties of random fluctuations and intra-grid consistency.In essence,this is a task of matching a short random sequence within a long reference,whose accuracy is mainly concerned with whether this match could be uniquely correct.In this paper,we comprehensively analyze the factors affecting the reliability of ENF matching,including the length of test recording,length of reference,temporal resolution,and Signal-to-Noise Ratio(SNR).For synthetic analysis,we incorporate the first-order AutoRegressive(AR)ENF model and propose an efficient Time-Frequency Domain noisy ENF synthesis method.Then,the reliability analysis schemes for both synthetic and real-world data are respectively proposed.Through a comprehensive study,we quantitatively reveal that while the SNR is an important external factor to determine whether timestamp verification is viable,the length of test recording is the most important inherent factor,followed by the length of reference.However,the temporal resolution has little impact on performance.Finally,a practical workflow of the ENF-based audio timestamp verification system is proposed,incorporating the discovered results.
文摘This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the common equation the natural frequencies of an n th order network are correlated with the n port parameters. The equation is simple and dual in form and clear in its physical meaning. The procedure of finding the solution is simplified and standardized, and it will not cause the loss of roots. The common equation would find wide use and be systematized.
文摘Following the principle of reuse partitioning, two new frequency planning schemes are proposed, the coverage-oriented scheme and the efficiency-oriented scheme, for the cellular system with two-hop fixed relay nodes (FRNs). Compared with the effficiency-oriented scheme, the coverage-oriented scheme has higher reuse distances and is developed with emphasis on the coverage, while compared with the coverage-oriented scheme, the efficiency-oriented scheme has smaller reuse distances and is developed with emphasis on the spectral efficiency. Taking uplink as an example, both simplified analysis and intensive computer simulations are presented to offer comparisons among FRN enhanced systems with the proposed schemes, with a known channel-borrowing based frequency planning scheme and the conventional cellular system without relaying. Studies show that the FRN enhanced system with the coverage-oriented scheme provides the best coverage, while that with the efficiency-oriented scheme offers the highest area spectral efficiency.
文摘The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a certain model with certain regularity,the FH frequency is thus predictable.In this paper,we investigate the FH frequency reconnais-sance and prediction of a non-cooperative communi-cation network by effective FH signal detection,time-frequency(TF)analysis,wavelet detection and fre-quency estimation.With the intercepted massive FH signal data,long short-term memory(LSTM)neural network model is constructed for FH frequency pre-diction.Simulation results show that our parameter es-timation methods could estimate frequency accurately in the presence of certain noise.Moreover,the LSTM-based scheme can effectively predict FH frequency and frequency interval.
基金supported by the National Science Foundation of China under Grants No. 61801492 and No. 61601490a national major specific project governed by the national development and reform commission of China
文摘High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication network(HFCN) in this paper.First, we present the benefits and the challenges by introducing diversity technology into the existing HFCN. Secondly, to exploit the benefits fully and overcome the challenges, we propose a system structure suitable for deploying diversity technology in HFCN in large scale,based on the cloud radio access network and software defined network. Moreover, we present a general structure for the real-time updating frequency management system that plays a more important role especially when resource consuming(e.g., frequency) diversity technology is deployed. Thirdly, we investigate the key techniques enabling diversity technology deployment. Finally, we point out the future research directions to help the HFCN with diversity work more efficiently and intelligently.
基金supported by National Natural Science Foundation of China(60904008,61273336)the Fundamental Research Funds for the Central Universities(2018MS025)the National Basic Research Program of China(973 Program)(B1320133020)
文摘This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme.
文摘We propose a new design of the high channel capacity in Mobile Ad Hoc Network that uses the dense wave-length division multiplexing wavelength enhancement, in which the increasing in channel capacity and sig-nal security can be provided. The increasing in number of channel can be obtained by the increasing in wavelength density, while the security is introduced by the specific wavelength filter, which is operated by the Ad Hoc node operator and link with other nodes in coverage by dedicated one-to-one in direct or relay node. The optical communication wavelength enhancement is reviewed. The advantage is that the proposed system can be implemented and used incorporating with the existed communication link in both infrastruc-ture-based and Ad Hoc networks wireless network, where the privacy can be provided, which is discussed in details.
基金supported by the National Key Scientific Instrument and Equipment Development Project,China(Grant No.2013YQ09094303)the Program of International Science and Technology Cooperation,China(Grant No.2016YFE0100200)
文摘A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and digital data networks to be integrated together and could represent an ideal option of interconnection among scientific institutions.The compensation functions of the time and frequency transfer scheme are set at the client nodes. The complexity of the central node is thus reduced, and future expansion by the addition of further branches will be accomplished more easily.During a performance test in which the ambient temperature fluctuation is 30℃/day, timing signal dissemination stability is achieved to be approximately ±50 ps along 25-km-long fiber spools. After calibration, a timing signal synchronization accuracy of 100 ps is also realized. The proposed scheme offers an option of the construction of large-scale fiber-based frequency and time transfer networks.
基金Supported by the Open Fund from Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing under Grant No 2015CSOBDP0101the National Natural Science Foundation of China under Grant No11162019
文摘Synchronization of networked phase oscillators depends essentially on the correlation between the topological structure of the graph and the dynamical property of the elements. We propose the concept of 'reduced frequency', a measure which can quantify natural frequencies of each pair of oscillators. Then we introduce an evolving network whose linking rules are controlled by its own dynamical property. The simulation results indicate that when the linking probability positively correlates with the reduced frequency, the network undergoes a first-order phase transition. Meanwhile, we discuss the circumstance under which an explosive synchronization can be ignited. The numerical results show that the peculiar butterfly shape correlation between frequencies and degrees of the nodes contributes to an explosive synchronization transition.
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
基金the Research Program through the National Research Foundation of Korea(NRF-2019R1A2C1005920).
文摘Future networks communication scenarios by the 2030s will include notable applications are three-dimensional(3D)calls,haptics communications,unmanned mobility,tele-operated driving,bio-internet of things,and the Nanointernet of things.Unlike the current scenario in which megahertz bandwidth are sufficient to drive the audio and video components of user applications,the future networks of the 2030s will require bandwidths in several gigahertzes(GHz)(from tens of gigahertz to 1 terahertz[THz])to perform optimally.Based on the current radio frequency allocation chart,it is not possible to obtain such a wide contiguous radio spectrum below 90 GHz(0.09 THz).Interestingly,these contiguous blocks of radio spectrum are readily available in the higher electromagnetic spectrum,specifically in the Terahertz(THz)frequency band.The major contribution of this study is discussing the substantial issues and key features of THz waves,which include(i)key features and significance of THz frequency;(ii)recent regulatory;(iii)the most promising applications;and(iv)possible open research issues.These research topics were deeply investigated with the aim of providing a specific,synopsis,and encompassing conclusion.Thus,this article will be as a catalyst towards exploring new frontiers for future networks of the 2030s.
基金supported by National Natural Science Foundation of China(61304263,61233007)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Arid
基金supported by the Czech Ministry of Education,Youth and Sports under project Reg.No.SP2021/25partially from the project“e-Infrastructure CZ”Reg.No.LM2018140.
文摘The field of mobility prediction has been widely investigated in the recent past,especially the reduction of the coverage radius of cellular networks,which led to an increase in hand-over events.Changing the cell coverage very frequently,for example,may lead to service disruptions if a predictive approach is not deployed in the system.Although several works examined mobility prediction in the new-generation mobile networks,all of these studies focused on studying the time features of mobility traces,and the spectral content of historical mobility patterns was not considered for prediction purposes as yet.In the present study,we propose a new approach to mobility prediction by analyzing the effects of a proper mobility sampling frequency.The proposed approach lies in the mobility analysis in the frequency domain,to extract hidden features of the mobility process.Thus,we proposed a new methodology to determine the spectral content of mobility traces(considered as signals)and,thus,the appropriate sampling frequency,which can provide numerous advantages.We considered several types of mobility models(e.g.pedestrian,urban,and vehicular),containing important details in the time and frequency domains.Several simulation campaigns were performed to observe and analyze the characteristics of mobility from real traces and to evaluate the effects of sampling frequency on the spectral content.
基金supported by the EU-FP7 iPLAN under Grant No.230745EU-FP7 IAPP@RANPLAN under Grant No.218309
文摘Femtocell networks have emerged as a key technology in residential, office building or hotspot deployments that can sig- nificantly fulfill high data demands in order to offioad indoor traffic from outdoor macro cells. However, as one of the major challenges, inter-femtocell interference gets worse in 3D in-building scenarios because of the presence of numerous interfering sources and then needs to be considered in the early network planning phase. The indoor network planning and optimization tool suite, Ranplan Small- cell~, makes accurate prediction of indoor wireless RF signal propagation possible to guide actual indoor femtocell deployments. In this paper, a new adaptive soft frequency reuse scheme in the dense femtocell networks is proposed, where multiple dense femtocells are classified into a number of groups according to the dominant interference strength to others, then the minimum subchannels with different frequency reuse factors for these groups are determined and transmit powers of the group- ing sub-channels are adaptively adjusted based on the strength to mitigate the mutual inter- ference. Simulation results show the proposed scheme yields great performance gains in terms of the spectrum efficiency relative to the legacy soft frequency reuse and universal fre- quency reuse.
文摘Performance analysis of an asynchronous frequency hopping packet radio network and numerical results are given. The network has mixed traffic, one type of packet needs an Acknowledgement(Ack), the other type does not need, the background of such a network is tactical missile systems. A reasonable network model is given, based on which the effect of various parameters under multiaccess interference is investigated. The performance curves of throughput and average packet delay is given in this paper.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60901029, 61172148, and 60925005)the Natural Science Foundation of Shaanxi Province, China (Grant No. 2011JQ8040)
文摘A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The frequency tuning is achieved by inserting varactor diodes between the square mesh and each unattached square patch. The square mesh is divided into two parts for biasing the varactor diodes. Full-wave numerical simulations show that a wide tuning range can be achieved by changing the capacitances of these loaded varactors. Two homo-type samples using fixed lumped capacitors are fabricated and measured using a standard waveguide measurement setup. Excellent agreement between the measured and simulated results is demonstrated.
文摘This paper introduces the characteristics of TD-SCDMA, and analyzes some networking schemes and methods of multifrequency. For the 5 MHz frequency bandwidth, a frequency planning scheme containing three frequencies is examined, and a simulation model is built to validate the performance of this scheme. Finally, this paper analyzes the advantages and disadvantages of the scheme, and proposes some directions for the future study of networking planning.