The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O...The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells.展开更多
Both whisker and nanometer MgSO4·5Mg(OH)2·3H2O(MOS) were prepared by hydrothermal method at 140℃for different times, using NaOH and MgSO4·7H2O as raw materials. The MgSO4·5Mg(OH)2·3H2O part i...Both whisker and nanometer MgSO4·5Mg(OH)2·3H2O(MOS) were prepared by hydrothermal method at 140℃for different times, using NaOH and MgSO4·7H2O as raw materials. The MgSO4·5Mg(OH)2·3H2O part icles were characterized by powder X ray diffraction(XRD),thermal analysis(TGA DSC), infrared spectroscopy(FT IR),transmission electron microscopy(SEM) and scanning electron microscopy(TEM). The size distribution in whisker like and nanocrystalline materials arein the range of 10~50μm and 10~20nm respectively. The whisker MOS is metastable phase in MgSO4 NaOH H2O system at 140℃,whereas nanometer MOS is stable phase.展开更多
Nanocrystalline MgSO\-4·5Mg(OH)\-2·3H\-2O were prepared by the hydrothermal reaction at 140 ℃ for 24 h. Nanoparticle samples were characterized by FTIR, TG, DSC, XRD and TEM. The size distribution of nano...Nanocrystalline MgSO\-4·5Mg(OH)\-2·3H\-2O were prepared by the hydrothermal reaction at 140 ℃ for 24 h. Nanoparticle samples were characterized by FTIR, TG, DSC, XRD and TEM. The size distribution of nanocrystalline is in the range of 10\20 nm, the mean size is 16 nm.展开更多
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province(No.2022A1515011832 and 2021A1515110676)supported by GDAS’Project of Science and Technology Development(2022GDASZH-2022010104,2022GDASZH-2022030604-04).
文摘The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells.
文摘Both whisker and nanometer MgSO4·5Mg(OH)2·3H2O(MOS) were prepared by hydrothermal method at 140℃for different times, using NaOH and MgSO4·7H2O as raw materials. The MgSO4·5Mg(OH)2·3H2O part icles were characterized by powder X ray diffraction(XRD),thermal analysis(TGA DSC), infrared spectroscopy(FT IR),transmission electron microscopy(SEM) and scanning electron microscopy(TEM). The size distribution in whisker like and nanocrystalline materials arein the range of 10~50μm and 10~20nm respectively. The whisker MOS is metastable phase in MgSO4 NaOH H2O system at 140℃,whereas nanometer MOS is stable phase.
文摘Nanocrystalline MgSO\-4·5Mg(OH)\-2·3H\-2O were prepared by the hydrothermal reaction at 140 ℃ for 24 h. Nanoparticle samples were characterized by FTIR, TG, DSC, XRD and TEM. The size distribution of nanocrystalline is in the range of 10\20 nm, the mean size is 16 nm.