The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry ...The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry air and combustion gas containing water vapour(natural gas burning).The oxidation is influenced by the gas atmosphere type,the iron alloying system,and the inoculating elements depending on the heating temperature.The weight gain increases from 0.001%-0.1%(400°C)to 0.05%-0.70%(600°C)and up to 0.10%-2.15%(800°C).No particular effects of the considered influencing factors are found when heating at 400°C,while at 600°C,mainly the oxidation gas atmosphere type shows a visible influence.At the highest heating temperature of 800°C,a limited increase of the weight gain is found for dry air atmosphere(up to 0.25%),but it drastically increases for combustion atmospheres(0.65%-2.15%).The water vapour presence in the combustion atmosphere is an important oxidising factor at 600-800°C.The alloying system appears to influence the oxidation behavior mainly at a heating temperature of 800°C in the combustion atmosphere,as evidenced by the lower weight gain in 5.25%silicon cast iron.Positive effects of inoculating elements increase with the heating temperature,with Ca and Ba-FeSi inoculation generally showing better performance.Irons inoculated with CaRE-FeSi exhibit a higher degree of oxidation.These results are in good relationship with the previous reported data:Ca-Ba-inoculation system appears to be better than simple Ca for improving the graphite parameters,while RE-bearing inoculant negatively affects the compactness degree of graphite particles in high-Si ductile irons.As the lower compactness degree is typical for graphite nodules in high-Si ductile irons,which negatively affects the oxidation resistance,it is necessary to employ specific metallurgical treatments to improve nodule quality.Inoculation,in particular,is a potential method to achieve this improvement.展开更多
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea...The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.展开更多
In the present research, TTT curve of bainitic ductile iron under the condition of controlled cooling was generated. The cooling rate of grinding ball and its temperature distribution were also measured at the same ti...In the present research, TTT curve of bainitic ductile iron under the condition of controlled cooling was generated. The cooling rate of grinding ball and its temperature distribution were also measured at the same time. It can be concluded that the bainitic zone of TTT curve is separated from the pearlitic zone. As compared to the water-quenching condition, more even cooling rate and temperature distribution can be achieved in the controlled cooling process. The controlled cooling can keep away from pearlitic zone in the high temperature cooling stage and produce similar results to the process of traditional isothermal cooling with a low cooling rate in the low temperature cooling stage.展开更多
The fast cooling rate of thin ductile iron castings requires special consideration to produce carbide-free castings. Extraordinary care was taken to select the charge to produce castings of 100-mm long round bars with...The fast cooling rate of thin ductile iron castings requires special consideration to produce carbide-free castings. Extraordinary care was taken to select the charge to produce castings of 100-mm long round bars with 16-mm diameter. The castings show the presence of carbides in the bars. Seven melts were made with different temperatures and with different compositions to get rid of carbides. After chemical analyses,it was found that the extra purity of the charge with less than 0.008wt% sulfur in the castings was the cause of carbides. To remove the carbides from the castings,sulfur should be added to the charge.展开更多
Recent progress in the production and technology of ductile cast iron castings in China is reviewed. The manufacture and process control of as-cast ductile iron are discussed. The microstructure, properties and applic...Recent progress in the production and technology of ductile cast iron castings in China is reviewed. The manufacture and process control of as-cast ductile iron are discussed. The microstructure, properties and application of partial austenitization normalizing ductile iron and austempered ductile iron (ADI) are briefly depicted. The new development of ductile iron production techniques, such as cored-wire injection (wire-feeding nodularization) process, tundish cover ladle nodularizing process, horizontal continuous casting, and EPC process (lost foam) for ductile iron castings, etc., are summarized.展开更多
The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron(DI) castings,typically applied in windmills industry,such as hubs and rotor ...The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron(DI) castings,typically applied in windmills industry,such as hubs and rotor housings.The requirements for high impact properties in DI at low temperatures are part of the ENGJS-400-18U-LT(SRN 1563) commonly referred to as GGG 40.3(DIN 1693).Pearlitic in-uence factor(Px) and antinodularising action factor(K1) were found to have an important in-uence on the structure and mechanical properties,as did Mn and P content,rare earth(RE) addition and inoculation power.The presence of high purity pig iron in the charge is extremely beneficial,not only to control the complex factors Px and K1,but also to improve the 'metallurgical quality' of the iron melt.A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation.Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings.The paper concluded on the optimum iron chemistry and melting procedure,Mg-alloys and inoculants peculiar systems,as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity,typically for this field.展开更多
In high-temperature applications,like exhaust manifolds,cast irons with a ferritic matrix are mostly used.However,the increasing demand for higher-temperature applications has led manufacturers to use additional expen...In high-temperature applications,like exhaust manifolds,cast irons with a ferritic matrix are mostly used.However,the increasing demand for higher-temperature applications has led manufacturers to use additional expensive materials such as stainless steels and Ni-resist austenitic ductile cast irons.Thus,in order to meet the demand while using low-cost materials,new alloys with improved high-temperature strength and oxidation resistance must be developed.In this study,thermodynamic calculations with Thermo-Calc software were applied to study a novel ductile cast iron with a composition of 3.5wt%C,4wt%Si,1wt%Nb,0‒4wt%Al.The designed compositions were cast,and thermal analysis and microstructural characterization were performed to validate the calculations.The lowest critical temperature of austenite to pearlite eutectoid transformation,i.e.,A1,was calculated,and the solidification sequence was determined.Both calculations and experimental data revealed the importance of aluminum addition,as the A1 increased by increasing the aluminum content in the alloys,indicating the possibility of utilizing the alloys at higher temperature.The experimental data validated the transformation temperature during solidification and at the solid state and confirmed the equilibrium phases at room temperature as ferrite,graphite,and MC-type carbides.展开更多
To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the ...To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidifi cation cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the fi ve castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.展开更多
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ...In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.展开更多
Using an artificial intelligent instrument and a computer feedback control method, a new thermal simulation systemis studied. Based on numerical simulation of casting solidification, a sample in the new system success...Using an artificial intelligent instrument and a computer feedback control method, a new thermal simulation systemis studied. Based on numerical simulation of casting solidification, a sample in the new system successfully simulatedthe solidification of heavy section ductile iron. The results show that the new thermal simulation system is accurateand reliable. Not only cooling curve but also graphite in the center of the thermal sample and the heavy sectionductile iron is identical. Realization of accurate thermal simulation of solidification in heavy section ductile iron willbe helpful for studying formation mechanism and controlling graphite degeneration in heavy section ductile iron.展开更多
A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate t...A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ±0.5%. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5% and 10%, respectively.展开更多
Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts.In the production of hydraulic rotators,dimensional t...Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts.In the production of hydraulic rotators,dimensional tolerances are typically 20μm to obtain designated performance.For castings where intermediate strength and ductility is required,it is common knowledge that conventional ferritic-pearlitic ductile irons such as ISO 1083/500-7 show large hardness variations.These are mainly caused by the notoriously varying pearlite content,both at different locations within a part and between parts in the same or different batches.Cooling rate variations due to different wall thickness and position in the molding box,as well as varying amounts of pearlite-stabilizing elements,all contribute to detrimental hardness variations.The obvious remedy is to avoid pearlite formation,and instead obtain the necessary mechanical properties by solution strengthening of the ferritic matrix by increasing silicon content to 3.7wt%-3.8wt%.The Swedish development in this field 1998 resulted in a national standardization as SS 140725,followed in 2004 by ISO 1083/ JS/500-10.Indexator AB decided 2005 to specify JS/500-10 for all new ductile iron parts and to convert all existing parts.Improvements include reduction by 75%in hardness variations and increase by 30%in cutting tool life,combined with consistently better mechanical properties.展开更多
As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (P) an...As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (P) and Anti- nodulizing Complex Factor (K1) have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE) and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and P〈2.0 are the basic conditions to obtain as-cast ferritic structure. At the same lower level of Mn and P, the increasing of residual elements (P〉2.0) determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P〈0.025%) and residual elements (Px〈2.0) allow to use relative high Mn content (0.32%-0.38%), in condition of ferritic structure, including in as-cast state. High P (0.04%- 0.045%) and Mn (0.25%-0.35%) content stabilized peadite, especially at lower level of residual elements (P 〈2.0). Antinodulizing action of elements was counteracted up to K1=2.0 level, by RE included in Mg-treatment alloy, which are beneficial for K1〈1.2 and compulsory for K1〉1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mg for Px〈1.5 and K1〈1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.展开更多
Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanic...Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow), M (medium) and F (fast). The cooling rates around the equilibrium eutectic temperature (1,150 ℃) for these cooling conditions (S, M and F) were set at 0.21 ℃.min1, 0.32℃.min1 and 0.37℃-min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight) antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE)/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.展开更多
Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of ...Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.展开更多
Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called...Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed.展开更多
The quantity and morphology of spheroidal graphite have an important effect on the properties of ductile iron, and the characteristics of spheroidal graphite are determined by the solidification process. The aim of th...The quantity and morphology of spheroidal graphite have an important effect on the properties of ductile iron, and the characteristics of spheroidal graphite are determined by the solidification process. The aim of this work is to explore the precipitation and evolution of graphite nodules in hypoeutectic, eutectic, and hypereutectic ductile irons by thermal analysis, liquid quenching and metallographic technique. Results show that hypoeutectic ductile iron has the longest solidification time and the lowest eutectic temperature;eutectic ductile iron has the shortest solidification time;hypereutectic ductile iron has the highest eutectic temperature. After solidification is completed, hypoeutectic ductile iron has the lowest nodule count, nodularity and graphite fraction;eutectic ductile iron has the highest nodule count, nodularity and the smallest nodule diameter;hypereutectic has the highest nodule diameter and graphite fraction. The nucleation and growth of graphite nodules in hypereutectic ductile iron starts before bulk eutectic crystallization stage, however, the precipitation and evolution of graphite nodules of hypoeutectic and eutectic ductile irons mainly occur in the eutectic crystallization stage. The graphite precipitated in eutectic crystallization of hypoeutectic, eutectic, and hypereutectic ductile irons, are 61%, 68% and 43% of total graphite volume fraction, respectively. Simultaneously, there are plenty of austenite dendrites in hypoeutectic and hypereutectic ductile irons, which are prone to shrinkage defects. Therefore, the eutectic ductile iron has the smallest shrinkage tendency.展开更多
The present study aims at finding out the effect of the addition of a single rare earth element, that is, lanthanum on the nodularity and nodule count of ductile iron under controlled conditions. For this purpose, fou...The present study aims at finding out the effect of the addition of a single rare earth element, that is, lanthanum on the nodularity and nodule count of ductile iron under controlled conditions. For this purpose, four melts with different compositions were made, using a 28 kg inductotherm medium frequency induction furnace. The temperature was carefully maintained between 1400 and 1450 ℃ for these heats. A good quality charge consisting of Sorel metal, ferrosilicon, Swedish iron, ferrosilicon magnesium, and ferrosilicon lanthanum was used for the production of melts. A vertically parted sand mould was used for casting of 10 test bars made from local silica sand. Standard coin samples were chill-cast to conduct chemical analysis of the ductile iron. Mierostructure study of the samples was conducted using a Leica optical microscope. Nodule count and nodularity of the samples were carried out using an image analyzer. The results obtained indicated that with the increased addition of lanthanum the nodule count of ductile iron increased, thus making it evident that it played a significant role in increasing the mechanical properties. The highest nodule count of 467 was obtained with the addition of 0.03% lanthanum. However, the effect of lanthanum on nodularity was negligible with nodularity ranging from 81% to 83 %.展开更多
To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with dif...To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with different cooling processes were prepared: casting A was prepared in a totally sand mold, and casting B was prepared in a sand mold with two chilling blocks placed on the left and right sides of the mold. Three positions in each casting with different solidification cooling rates were chosen. In-situ SEM tensile experiment was used to observe the dynamic tensile process. Fracture analysis was conducted to study the influence of vermicular and slightly irregular spheroidal graphite on the fracture behavior of heavy section ductile iron. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings all decrease with decreasing cooling rate. With the increase of solidification time, the fracture mechanism of conventional casting A changes from ductile fracture to brittle fracture, and that of casting B with forced cooling changes from ductile fracture to a mixture of ductile-brittle fracture.展开更多
The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent duc...The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.展开更多
基金supported by a grant from National Program for Research of the National Association of Technical Universities-GNAC ARUT 2023.
文摘The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry air and combustion gas containing water vapour(natural gas burning).The oxidation is influenced by the gas atmosphere type,the iron alloying system,and the inoculating elements depending on the heating temperature.The weight gain increases from 0.001%-0.1%(400°C)to 0.05%-0.70%(600°C)and up to 0.10%-2.15%(800°C).No particular effects of the considered influencing factors are found when heating at 400°C,while at 600°C,mainly the oxidation gas atmosphere type shows a visible influence.At the highest heating temperature of 800°C,a limited increase of the weight gain is found for dry air atmosphere(up to 0.25%),but it drastically increases for combustion atmospheres(0.65%-2.15%).The water vapour presence in the combustion atmosphere is an important oxidising factor at 600-800°C.The alloying system appears to influence the oxidation behavior mainly at a heating temperature of 800°C in the combustion atmosphere,as evidenced by the lower weight gain in 5.25%silicon cast iron.Positive effects of inoculating elements increase with the heating temperature,with Ca and Ba-FeSi inoculation generally showing better performance.Irons inoculated with CaRE-FeSi exhibit a higher degree of oxidation.These results are in good relationship with the previous reported data:Ca-Ba-inoculation system appears to be better than simple Ca for improving the graphite parameters,while RE-bearing inoculant negatively affects the compactness degree of graphite particles in high-Si ductile irons.As the lower compactness degree is typical for graphite nodules in high-Si ductile irons,which negatively affects the oxidation resistance,it is necessary to employ specific metallurgical treatments to improve nodule quality.Inoculation,in particular,is a potential method to achieve this improvement.
文摘The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.
文摘In the present research, TTT curve of bainitic ductile iron under the condition of controlled cooling was generated. The cooling rate of grinding ball and its temperature distribution were also measured at the same time. It can be concluded that the bainitic zone of TTT curve is separated from the pearlitic zone. As compared to the water-quenching condition, more even cooling rate and temperature distribution can be achieved in the controlled cooling process. The controlled cooling can keep away from pearlitic zone in the high temperature cooling stage and produce similar results to the process of traditional isothermal cooling with a low cooling rate in the low temperature cooling stage.
文摘The fast cooling rate of thin ductile iron castings requires special consideration to produce carbide-free castings. Extraordinary care was taken to select the charge to produce castings of 100-mm long round bars with 16-mm diameter. The castings show the presence of carbides in the bars. Seven melts were made with different temperatures and with different compositions to get rid of carbides. After chemical analyses,it was found that the extra purity of the charge with less than 0.008wt% sulfur in the castings was the cause of carbides. To remove the carbides from the castings,sulfur should be added to the charge.
文摘Recent progress in the production and technology of ductile cast iron castings in China is reviewed. The manufacture and process control of as-cast ductile iron are discussed. The microstructure, properties and application of partial austenitization normalizing ductile iron and austempered ductile iron (ADI) are briefly depicted. The new development of ductile iron production techniques, such as cored-wire injection (wire-feeding nodularization) process, tundish cover ladle nodularizing process, horizontal continuous casting, and EPC process (lost foam) for ductile iron castings, etc., are summarized.
文摘The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron(DI) castings,typically applied in windmills industry,such as hubs and rotor housings.The requirements for high impact properties in DI at low temperatures are part of the ENGJS-400-18U-LT(SRN 1563) commonly referred to as GGG 40.3(DIN 1693).Pearlitic in-uence factor(Px) and antinodularising action factor(K1) were found to have an important in-uence on the structure and mechanical properties,as did Mn and P content,rare earth(RE) addition and inoculation power.The presence of high purity pig iron in the charge is extremely beneficial,not only to control the complex factors Px and K1,but also to improve the 'metallurgical quality' of the iron melt.A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation.Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings.The paper concluded on the optimum iron chemistry and melting procedure,Mg-alloys and inoculants peculiar systems,as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity,typically for this field.
基金financial support given by Scientific Research Projects Coordination Unit of Kocaeli University under the project No. 2017/118
文摘In high-temperature applications,like exhaust manifolds,cast irons with a ferritic matrix are mostly used.However,the increasing demand for higher-temperature applications has led manufacturers to use additional expensive materials such as stainless steels and Ni-resist austenitic ductile cast irons.Thus,in order to meet the demand while using low-cost materials,new alloys with improved high-temperature strength and oxidation resistance must be developed.In this study,thermodynamic calculations with Thermo-Calc software were applied to study a novel ductile cast iron with a composition of 3.5wt%C,4wt%Si,1wt%Nb,0‒4wt%Al.The designed compositions were cast,and thermal analysis and microstructural characterization were performed to validate the calculations.The lowest critical temperature of austenite to pearlite eutectoid transformation,i.e.,A1,was calculated,and the solidification sequence was determined.Both calculations and experimental data revealed the importance of aluminum addition,as the A1 increased by increasing the aluminum content in the alloys,indicating the possibility of utilizing the alloys at higher temperature.The experimental data validated the transformation temperature during solidification and at the solid state and confirmed the equilibrium phases at room temperature as ferrite,graphite,and MC-type carbides.
基金supported by the National Natural Science Foundation of China(Nos.51174068 and 51374086)
文摘To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidifi cation cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the fi ve castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.
基金financially supported by the fund of the Key Projects of Shaanxi Provincial International Technology Cooperation Plan(2013KW16)the Scientific Research Program funded by Shaanxi Provincial Education Department(2013JK0914)+2 种基金the State Key Laboratory of Solidifi cation Processing in NWPU(SKLSP201115)the Scientific Research Project of Xi'an University of Technology(2013CX004)the fund of the Key Laboratory of Electrical Materials and Infi ltration Technology of Shaanxi Province,China(2014)
文摘In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.
文摘Using an artificial intelligent instrument and a computer feedback control method, a new thermal simulation systemis studied. Based on numerical simulation of casting solidification, a sample in the new system successfully simulatedthe solidification of heavy section ductile iron. The results show that the new thermal simulation system is accurateand reliable. Not only cooling curve but also graphite in the center of the thermal sample and the heavy sectionductile iron is identical. Realization of accurate thermal simulation of solidification in heavy section ductile iron willbe helpful for studying formation mechanism and controlling graphite degeneration in heavy section ductile iron.
文摘A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ±0.5%. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5% and 10%, respectively.
文摘Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts.In the production of hydraulic rotators,dimensional tolerances are typically 20μm to obtain designated performance.For castings where intermediate strength and ductility is required,it is common knowledge that conventional ferritic-pearlitic ductile irons such as ISO 1083/500-7 show large hardness variations.These are mainly caused by the notoriously varying pearlite content,both at different locations within a part and between parts in the same or different batches.Cooling rate variations due to different wall thickness and position in the molding box,as well as varying amounts of pearlite-stabilizing elements,all contribute to detrimental hardness variations.The obvious remedy is to avoid pearlite formation,and instead obtain the necessary mechanical properties by solution strengthening of the ferritic matrix by increasing silicon content to 3.7wt%-3.8wt%.The Swedish development in this field 1998 resulted in a national standardization as SS 140725,followed in 2004 by ISO 1083/ JS/500-10.Indexator AB decided 2005 to specify JS/500-10 for all new ductile iron parts and to convert all existing parts.Improvements include reduction by 75%in hardness variations and increase by 30%in cutting tool life,combined with consistently better mechanical properties.
文摘As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (P) and Anti- nodulizing Complex Factor (K1) have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE) and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and P〈2.0 are the basic conditions to obtain as-cast ferritic structure. At the same lower level of Mn and P, the increasing of residual elements (P〉2.0) determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P〈0.025%) and residual elements (Px〈2.0) allow to use relative high Mn content (0.32%-0.38%), in condition of ferritic structure, including in as-cast state. High P (0.04%- 0.045%) and Mn (0.25%-0.35%) content stabilized peadite, especially at lower level of residual elements (P 〈2.0). Antinodulizing action of elements was counteracted up to K1=2.0 level, by RE included in Mg-treatment alloy, which are beneficial for K1〈1.2 and compulsory for K1〉1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mg for Px〈1.5 and K1〈1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.
基金supported by the Significant Science and Technology Project of Guangdong,China-Application and Demonstration of Energy Conservation and Emission Reduction Technology in Foundry Industry(2008A080800022)
文摘Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow), M (medium) and F (fast). The cooling rates around the equilibrium eutectic temperature (1,150 ℃) for these cooling conditions (S, M and F) were set at 0.21 ℃.min1, 0.32℃.min1 and 0.37℃-min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight) antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE)/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.
基金financially supported by the National Natural Science Foundation of China(No.51274142)the Science&Technology Project of Liaoning Province(No.2009221005)the Science&Technology Project of Shenyang City(Nos.F10-035-2-00 and F11-069-2-00)
文摘Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.
文摘Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed.
基金This work was financially supported by the National Natural Science F oundation of China(NSFC)under Grant Nos.51601054 and 51775006the Natural Science Foundation of Hebei Province of China under Grant Nos.E2017202095 and E2016202100+1 种基金the Scientific and Technological Transformative Project of Tianjin Supporting Bijing-Tianjin-Hebei under Grant No.18YFCZZC00030the Central Government Guides I.ocal Science and Technology Development Fund Projects under Grant No.206Z 1005G.
文摘The quantity and morphology of spheroidal graphite have an important effect on the properties of ductile iron, and the characteristics of spheroidal graphite are determined by the solidification process. The aim of this work is to explore the precipitation and evolution of graphite nodules in hypoeutectic, eutectic, and hypereutectic ductile irons by thermal analysis, liquid quenching and metallographic technique. Results show that hypoeutectic ductile iron has the longest solidification time and the lowest eutectic temperature;eutectic ductile iron has the shortest solidification time;hypereutectic ductile iron has the highest eutectic temperature. After solidification is completed, hypoeutectic ductile iron has the lowest nodule count, nodularity and graphite fraction;eutectic ductile iron has the highest nodule count, nodularity and the smallest nodule diameter;hypereutectic has the highest nodule diameter and graphite fraction. The nucleation and growth of graphite nodules in hypereutectic ductile iron starts before bulk eutectic crystallization stage, however, the precipitation and evolution of graphite nodules of hypoeutectic and eutectic ductile irons mainly occur in the eutectic crystallization stage. The graphite precipitated in eutectic crystallization of hypoeutectic, eutectic, and hypereutectic ductile irons, are 61%, 68% and 43% of total graphite volume fraction, respectively. Simultaneously, there are plenty of austenite dendrites in hypoeutectic and hypereutectic ductile irons, which are prone to shrinkage defects. Therefore, the eutectic ductile iron has the smallest shrinkage tendency.
文摘The present study aims at finding out the effect of the addition of a single rare earth element, that is, lanthanum on the nodularity and nodule count of ductile iron under controlled conditions. For this purpose, four melts with different compositions were made, using a 28 kg inductotherm medium frequency induction furnace. The temperature was carefully maintained between 1400 and 1450 ℃ for these heats. A good quality charge consisting of Sorel metal, ferrosilicon, Swedish iron, ferrosilicon magnesium, and ferrosilicon lanthanum was used for the production of melts. A vertically parted sand mould was used for casting of 10 test bars made from local silica sand. Standard coin samples were chill-cast to conduct chemical analysis of the ductile iron. Mierostructure study of the samples was conducted using a Leica optical microscope. Nodule count and nodularity of the samples were carried out using an image analyzer. The results obtained indicated that with the increased addition of lanthanum the nodule count of ductile iron increased, thus making it evident that it played a significant role in increasing the mechanical properties. The highest nodule count of 467 was obtained with the addition of 0.03% lanthanum. However, the effect of lanthanum on nodularity was negligible with nodularity ranging from 81% to 83 %.
基金financially supported by the National Natural Science Foundation of China(No.51174068 and No.51374086)
文摘To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with different cooling processes were prepared: casting A was prepared in a totally sand mold, and casting B was prepared in a sand mold with two chilling blocks placed on the left and right sides of the mold. Three positions in each casting with different solidification cooling rates were chosen. In-situ SEM tensile experiment was used to observe the dynamic tensile process. Fracture analysis was conducted to study the influence of vermicular and slightly irregular spheroidal graphite on the fracture behavior of heavy section ductile iron. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings all decrease with decreasing cooling rate. With the increase of solidification time, the fracture mechanism of conventional casting A changes from ductile fracture to brittle fracture, and that of casting B with forced cooling changes from ductile fracture to a mixture of ductile-brittle fracture.
文摘The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.