用XRD、SEM、EDS和电化学测试方法研究了退火温度对A_2B_7型La_(0.33)Y_(0.67)Ni_(3.25)Mn_(0.15)Al_(0.1)储氢合金微观组织和电化学性能的影响规律。结果表明,合金铸态组织由2H-Ce_2Ni_7、3R-Gd_2Co_7、CaCu_5和3R-Ce_5Co_(19)型相组成...用XRD、SEM、EDS和电化学测试方法研究了退火温度对A_2B_7型La_(0.33)Y_(0.67)Ni_(3.25)Mn_(0.15)Al_(0.1)储氢合金微观组织和电化学性能的影响规律。结果表明,合金铸态组织由2H-Ce_2Ni_7、3R-Gd_2Co_7、CaCu_5和3R-Ce_5Co_(19)型相组成;随退火温度(850~950℃)升高,Ce_2Ni_7型主相丰度和晶胞体积逐渐增加,至950℃退火后,CaCu_5和Gd_2Co_7型相基本消失,主相Ce_2Ni_7型相丰度和晶胞体积均达到最大值;退火温度≥950℃时,Ce_2Ni_7型和Ce_5Co_(19)型相丰度分别又有所减少和增加。950℃退火合金具有较低的放氢平台压(1.92~8.70 k Pa)和较高的电化学放电容量(371 mAh/g),经100次充放电循环后其容量保持率S100达到89%。退火合金电极的HRD性能均得到不同程度的提高,其中950℃退火合金具有最佳的大电流放电性能(HRD900=83.4%)。氢在合金中的扩散是影响其高倍率放电性能的控制因素。展开更多
文摘用XRD、SEM、EDS和电化学测试方法研究了退火温度对A_2B_7型La_(0.33)Y_(0.67)Ni_(3.25)Mn_(0.15)Al_(0.1)储氢合金微观组织和电化学性能的影响规律。结果表明,合金铸态组织由2H-Ce_2Ni_7、3R-Gd_2Co_7、CaCu_5和3R-Ce_5Co_(19)型相组成;随退火温度(850~950℃)升高,Ce_2Ni_7型主相丰度和晶胞体积逐渐增加,至950℃退火后,CaCu_5和Gd_2Co_7型相基本消失,主相Ce_2Ni_7型相丰度和晶胞体积均达到最大值;退火温度≥950℃时,Ce_2Ni_7型和Ce_5Co_(19)型相丰度分别又有所减少和增加。950℃退火合金具有较低的放氢平台压(1.92~8.70 k Pa)和较高的电化学放电容量(371 mAh/g),经100次充放电循环后其容量保持率S100达到89%。退火合金电极的HRD性能均得到不同程度的提高,其中950℃退火合金具有最佳的大电流放电性能(HRD900=83.4%)。氢在合金中的扩散是影响其高倍率放电性能的控制因素。