期刊文献+
共找到679篇文章
< 1 2 34 >
每页显示 20 50 100
OsbZIP53 Negatively Regulates Immunity Response by Involving in Reactive Oxygen Species and Salicylic Acid Metabolism in Rice
1
作者 WU Lijuan HAN Cong +5 位作者 WANG Huimei HE Yuchang LIN Hai WANG Lei CHEN Chen E Zhiguo 《Rice science》 SCIE CSCD 2024年第2期190-202,I0022-I0028,共20页
The basic region/leucine zipper(bZIP)transcription factors play important roles in plant development and responses to abiotic and biotic stresses.OsbZIP53 regulates resistance to Magnaporthe oryzae in rice by analyzin... The basic region/leucine zipper(bZIP)transcription factors play important roles in plant development and responses to abiotic and biotic stresses.OsbZIP53 regulates resistance to Magnaporthe oryzae in rice by analyzing APIP5-RNAi transgenic plants.To further investigate the biological functions of OsbZIP53,we generated osbzip53 mutants using CRISPR/Cas9 editing and also constructed OsbZIP53 over-expression transgenic plants.Comprehensive analysis of phenotypical,physiological,and transcriptional data showed that knocking-out OsbZIP53 not only improved disease resistance by inducing a hypersensitivity response in plants,but also regulated the immune response through the salicylic acid pathway.Specifically,disrupting OsbZIP53 increased H2O2 accumulation by promoting reactive oxygen species generation through up-regulation of several respiratory burst oxidase homologs(Osrboh genes)and weakened H2O2 degradation by directly targeting OsMYBS1.In addition,the growth of osbzip53 mutants was seriously impaired,while OsbZIP53 over-expression lines displayed a similar phenotype to the wild type,suggesting that OsbZIP53 has a balancing effect on rice immune response and growth. 展开更多
关键词 OsbZIP53 hypersensitive response reactive oxygen species metabolism rice immunity salicylic acid transcription factor
下载PDF
Microarrow sensor array with enhanced skin adhesion for transdermal continuous monitoring of glucose and reactive oxygen species
2
作者 Xinshuo Huang Baoming Liang +9 位作者 Shantao Zheng Feifei Wu Mengyi He Shuang Huang Jingbo Yang Qiangqiang Ouyang Fanmao Liu Jing Liu Hui-jiuan Chen Xi Xie 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an... Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients. 展开更多
关键词 Microarrow sensor array Glucose sensing reactive oxygen species sensing Integrated system Continuous monitoring
下载PDF
Do reactive oxygen species damage or protect the heart in ischemia and reperfusion?Analysis on experimental and clinical data 被引量:1
3
作者 Leonid N.Maslov Natalia V.Naryzhnaya +9 位作者 Maria Sirotina Alexandr V.Mukhomedzyanov Boris K.Kurbatov Alla A.Boshchenko Huijie Ma Yi Zhang Feng Fu Jianming Pei Viacheslav N.Azev Vladimir A.Pereverzev 《The Journal of Biomedical Research》 CAS CSCD 2023年第4期255-267,共13页
The role of reactive oxygen species(ROS)in ischemic and reperfusion(I/R)injury of the heart has been discussed for more than 40 years.It has been demonstrated that reperfusion triggers a multiple increase in free radi... The role of reactive oxygen species(ROS)in ischemic and reperfusion(I/R)injury of the heart has been discussed for more than 40 years.It has been demonstrated that reperfusion triggers a multiple increase in free radical generation in the isolated heart.Antioxidants were found to have the ability to mitigate I/R injury of the heart.However,it is unclear whether their cardioprotective effect truly depends on the decrease of ROS levels in myocardial tissues.Since high doses and high concentrations of antioxidants were experimentally used,it is highly likely that the cardioprotective effect of antioxidants depends on their interaction not only with free radicals but also with other molecules.It has been demonstrated that the antioxidant N-2-mercaptopropionyl glycine or NDPH oxidase knockout abolished the cardioprotective effect of ischemic preconditioning.Consequently,there is evidence that ROS protect the heart against the I/R injury. 展开更多
关键词 reactive oxygen species free radicals ANTIOXIDANTS HEART REPERFUSION patients
下载PDF
Novel insights into the mechanism of reactive oxygen species-mediated neurodegeneration
4
作者 Shuji Wakatsuki Toshiyuki Araki 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期746-749,共4页
Neurite degeneration,a major component of many neurodegenerative diseases,such as Parkinson’s disease,Alzheimer’s disease,and amyotrophic lateral sclerosis,is not part of the typical apoptosis signaling mechanism,bu... Neurite degeneration,a major component of many neurodegenerative diseases,such as Parkinson’s disease,Alzheimer’s disease,and amyotrophic lateral sclerosis,is not part of the typical apoptosis signaling mechanism,but rather it appears that a self-destructive process is in action.Oxidative stress is a well-known inducer of neurodegenerative pathways:neuronal cell death and neurite degeneration.Although oxidative stress exerts cytotoxic effects leading to neuronal loss,the pathogenic mechanisms and precise signaling pathways by which oxidative stress causes neurite degeneration have remained entirely unknown.We previously reported that reactive oxygen species generated by NADPH oxidases induce activation of the E3 ubiquitin ligase ZNRF1 in neurons,which promotes neurite degeneration.In this process,the phosphorylation of an NADPH oxidase subunit p47-phox at the 345serine residue serves as an important checkpoint to initiate the ZNRF1-dependent neurite degeneration.Evidence provides new insights into the mechanism of reactive oxygen species-mediated neurodegeneration.In this review,we focus specifically on reactive oxygen species-induced neurite degeneration by highlighting a phosphorylation-dependent regulation of the molecular interaction between ZNRF1 and the NADPH oxidase complex. 展开更多
关键词 neurite degeneration oxidative stress PHOSPHORYLATION reactive oxygen species ubiquitin ligase
下载PDF
Effect and mechanism of reactive oxygen species-mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation in hepatic alveolar echinococcosis
5
作者 Cai-Song Chen Yao-Gang Zhang +1 位作者 Hai-Jiu Wang Hai-Ning Fan 《World Journal of Gastroenterology》 SCIE CAS 2023年第14期2153-2171,共19页
BACKGROUND The NOD-like receptor family pyrin domain-containing 3(NLRP3)inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases.Howe... BACKGROUND The NOD-like receptor family pyrin domain-containing 3(NLRP3)inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases.However,its role in hepatic alveolar echinococcosis(HAE)remains unclear.AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.METHODS We assessed the expression of NLRP3,caspase-1,interleukin(IL)-1β,and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE.A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE.Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis(E.multilocularis)in stimulating Kupffer cells and hepatocytes.Furthermore,immunohistochemistry,Western blotting,and enzyme-linked immunosorbent assay were used to evaluate NLRP3,caspase-1,IL-1β,and IL-18 expression;flow cytometry was used to detect apoptosis and reactive oxygen species(ROS).RESULTS NLRP3 inflammasome activation was significantly associated with ROS.Inhibition of ROS production decreased NLRP3-caspase-1-IL-1βpathway activation and mitigated hepatocyte damage and inflammation.CONCLUSION E.multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1βpathway in Kupffer cells,indicating that ROS may serve as a potential target for the treatment of HAE. 展开更多
关键词 Hepatic alveolar echinococcosis INFLAMMASOME Inflammation Kupffer cell NLR family pyrin domain-containing 3 protein reactive oxygen species
下载PDF
Canonical transient receptor potential channel 1 aggravates myocardial ischemia-and-reperfusion injury by upregulating reactive oxygen species
6
作者 Hui-Nan Zhang Meng Zhang +15 位作者 Wen Tian Wei Quan Fan Song Shao-Yuan Liu Xiao-Xiao Liu Dan Mo Yang Sun Yuan-Yuan Gao Wen Ye Ying-Da Feng Chang-Yang Xing Chen Ye Lei Zhou Jing-Ru Meng Wei Cao Xiao-Qiang Li 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第11期1309-1325,共17页
The canonical transient receptor potential channel(TRPC)proteins form Ca^(2+)-permeable cation channels that are involved in various heart diseases.However,the roles of specific TRPC proteins in myocardial ischemia/re... The canonical transient receptor potential channel(TRPC)proteins form Ca^(2+)-permeable cation channels that are involved in various heart diseases.However,the roles of specific TRPC proteins in myocardial ischemia/reperfusion(I/R)injury remain poorly understood.We observed that TRPC1 and TRPC6 were highly expressed in the area at risk(AAR)in a coronary artery ligation induced I/R model.Trpc1/mice exhibited improved cardiac function,lower serum Troponin T and serum creatine kinase level,smaller infarct volume,less fibrotic scars,and fewer apoptotic cells after myocardial-I/R than wild-type or Trpc6/mice.Cardiomyocyte-specific knockdown of Trpc1 using adeno-associated virus 9 mitigated myocardial I/R injury.Furthermore,Trpc1 deficiency protected adult mouse ventricular myocytes(AMVMs)and HL-1 cells from death during hypoxia/reoxygenation(H/R)injury.RNA-sequencing-based transcriptome analysis revealed differential expression of genes related to reactive oxygen species(ROS)generation in Trpc1/cardiomyocytes.Among these genes,oxoglutarate dehydrogenase-like(Ogdhl)was markedly downregulated.Moreover,Trpc1 deficiency impaired the calcineurin(CaN)/nuclear factorkappa B(NF-kB)signaling pathway in AMVMs.Suppression of this pathway inhibited Ogdhl upregulation and ROS generation in HL-1 cells under H/R conditions.Chromatin immunoprecipitation assays confirmed NF-kB binding to the Ogdhl promoter.The cardioprotective effect of Trpc1 deficiency was canceled out by overexpression of NF-kB and Ogdhl in cardiomyocytes.In conclusion,our findings reveal that TRPC1 is upregulated in the AAR following myocardial I/R,leading to increased Ca^(2+) influx into associated cardiomyocytes.Subsequently,this upregulates Ogdhl expression through the CaN/NF-kB signaling pathway,ultimately exacerbating ROS production and aggravating myocardial I/R injury. 展开更多
关键词 TRPC1 Myocardial ischemia/reperfusion reactive oxygen species OGDHL
下载PDF
Effects of N-acetylcysteine on growth,viability and reactive oxygen species levels in small antral follicles cultured in vitro
7
作者 Efigênia B.Cordeiro Bianca R.Silva +4 位作者 Laís R.F.M.Paulino Pedro A.A.Barroso Laryssa G.Barrozo Miguel F.de Lima Neto JoséR.V.Silva 《Asian pacific Journal of Reproduction》 2023年第1期42-48,共7页
Objective:To investigate the effects of different concentrations of N-acetylcysteine on follicular growth and morphology,as well as on viability,levels of reactive oxygen species(ROS)and meiotic progression of oocytes... Objective:To investigate the effects of different concentrations of N-acetylcysteine on follicular growth and morphology,as well as on viability,levels of reactive oxygen species(ROS)and meiotic progression of oocytes from in vitro cultured bovine early antral follicles.Methods:Isolated early antral follicles(about 500μm)were cultured in TCM-199+alone or supplemented with 1.0,5.0 or 25.0 mM N-acetylcysteine at 38.5℃with 5%CO_(2) for 8 days.Follicle diameters were evaluated at day 0,4 and 8 of culture.At the end of culture,the levels of ROS,chromatin configuration and viability(calcein-AM and ethidium homodimer-1 staining)were investigated in the cumulus-oocyte complexes.Comparisons of follicle diameters between treatments were performed.Data on percentages of morphologically normal follicles,growth rates and chromatin configuration in different treatments were compared.Results:An increase in follicular diameters after culture in all treatments was observed,except for follicles cultured with 25.0 mM N-acetylcysteine.Fluorescence microscopy showed that oocytes cultured in all treatments were stained positively with calcein AM,and that 5.0 mM N-acetylcysteine reduced fluorescence for ethidium homodimer-1.Intracellular levels of ROS in oocytes from follicles cultured with 1.0 mM N-acetylcysteine showed a significant reduction compared to other treatments.The presence of N-acetylcysteine in culture medium did not influence the rates of oocyte at the germinal vesicle stage.Conclusions:N-acetylcysteine at concentrations of 1.0 and 5.0 mM reduces ROS levels and staining for ethidium homodimer-1 in in vitro cultured follicles,respectively,while 25.0 mM N-acetylcysteine decreases follicular growth and the percentages of continuously growing follicles. 展开更多
关键词 ANTIOXIDANT N-ACETYLCYSTEINE Antral follicles BOVINE reactive oxygen species
下载PDF
Role of reactive oxygen species in epithelial-mesenchymal transition and apoptosis of human lens epithelial cells
8
作者 Rui-Hua Jing Cong-Hui Hu +1 位作者 Tian-Tian Qi Bo Ma 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第12期1935-1941,共7页
AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after t... AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after transforming growth factorβ2(TGF-β2)induction.Apoptosis of HLECs after H_(2)O_(2) and TGF-β2 interference with or without ROS scavenger N-acetylcysteine(NAC)were assessed by flow cytometry.The corresponding protein expression levels of the EMT markerα-smooth muscle actin(α-SMA),the extracellular matrix(ECM),marker fibronectin(Fn),and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger(NAC).Wound-healing and Transwell assays were used to assess the migration capability of HLECs.RESULTS:TGF-β2 stimulates ROS production within 8h in HLECs.Additionally,TGF-β2 induced HLECs cell apoptosis,EMT/ECM synthesis protein markers expression,and pro-apoptotic proteins production;nonetheless,NAC treatment prevented these responses.Similarly,TGF-β2 promoted HLECs cell migration,whereas NAC inhibited cell migration.We further determined that although ROS initiated apoptosis,it only induced the accumulation of the EMT markerα-SMA protein,but not COL-1 or Fn.CONCLUSION:ROS contribute to TGF-β2-induced EMT/ECM synthesis and cell apoptosis of HLECs;however,ROS alone are not sufficient for EMT/ECM synthesis. 展开更多
关键词 human lens epithelial cells epithelial-mesenchymal transition transforming growth factorβ2 reactive oxygen species APOPTOSIS
下载PDF
Corrigendum to“Reactive oxygen species in plasma against E.coli cells survival rate”
9
作者 周仁武 张先徽 +4 位作者 宗子超 李俊雄 杨周斌 刘东平 杨思泽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期776-776,共1页
Recently, we found some errors in Fig. 3 of the article Chin. Phys. B 24 085201 (2015). Upon a thorough examination of the raw data materials, we confirm that the image error did not impact any of the findings and con... Recently, we found some errors in Fig. 3 of the article Chin. Phys. B 24 085201 (2015). Upon a thorough examination of the raw data materials, we confirm that the image error did not impact any of the findings and conclusions of the paper. Based on this, we have made corrections to the original article. 展开更多
关键词 atmospheric-pressure plasma reactive oxygen species inactivation efficiency
下载PDF
A Novel Dominant Allele from 93-11, ES(4), Represses Reactive Oxygen Species Scavenging and Leads to Early-Senescence in Rice
10
作者 Zhishu Jiang Cong Gan +5 位作者 Yulian Liu Xiaoli Lin Limei Peng Yongping Song Xiaowei Luo Jie Xu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期665-677,共13页
Senescence is the last developmental process in plant,which has an important impact on crop yield and quality.In this study,a stable hereditary early-senescence line BC64 was isolated from the high-generation recombin... Senescence is the last developmental process in plant,which has an important impact on crop yield and quality.In this study,a stable hereditary early-senescence line BC64 was isolated from the high-generation recombinant inbred lines of 93-11 and Wuyunjing7(W7).Genetic analysis showed that the premature aging phenotype was controlled by a dominant gene derived from 93-11.By linkage analysis,the gene was primarily mapped in the region between marker B4 and B5 near the centromere of chromosome 4,described as ES(4).Through multiple backcrossing with W7,the near-isogenic line of ES(4)(NIL-ES(4))was obtained.Compared with wild-type W7,NIL-ES(4)plants showed more sever senescence phenotype in both nature and dark conditions.In NIL plants,leaves turned yellow at the fully tillering stage;photosynthetic rate,pollen fertility and seed setting rate were decreased.Moreover,the malondialdehyde,proline content and relative conductivity in NIL-ES(4)were significantly higher than those in W7;both transcript level and activities of reactive oxygen species scavenging enzymes were repressed;H2O2 and O^(2−)were significantly accumulated.This study provides a basis for further cloning and function identification of ES(4). 展开更多
关键词 RICE early-senescence gene mapping chlorophyll degradation reactive oxygen species scavenging
下载PDF
Danlu Tongdu tablets treat lumbar spinal stenosis through reducing reactive oxygen species and apoptosis by regulating CDK2/CDK4/CDKN1A expression
11
作者 Xue Bai Ayesha Tasleem Tahir +3 位作者 Zheng-Heng Yu Wen-Bo Cheng Bo Zhang Jun Kang 《Traditional Medicine Research》 2023年第7期47-55,共9页
Lumbar spinal stenosis is caused by the compression of the nerve root or cauda equina nerve by stenosis of the lumbar spinal canal or intervertebral foramen,and is manifested as chronic low back and leg pain.Danlu Ton... Lumbar spinal stenosis is caused by the compression of the nerve root or cauda equina nerve by stenosis of the lumbar spinal canal or intervertebral foramen,and is manifested as chronic low back and leg pain.Danlu Tongdu(DLTD)tablets can relieve chronic pain caused by lumbar spinal stenosis,but the molecular mechanism remains largely unknown.In this study,the potential molecular mechanism of DLTD tablets in the treatment of lumbar spinal stenosis was first predicted by the network pharmacology method.Results showed that DLTD functions in regulating anti-oxidative,apoptosis,and inflammation signaling pathways.Furthermore,the flow cytometry results showed that DLTD tablets efficiently reduced reactive oxygen species content and inhibited rat neural stem cell apoptosis induced by hydrogen peroxide.DLTD also inhibited the mitochondrial membrane potential damage induced by hydrogen peroxide.Elisa analysis showed that DLTD induced cell cycle-related protein,CDK2 and CDK4,and reduced CDKN1A protein expression level.Taken together,our study provided new insights of DLTD in treating lumbar spinal stenosis through reducing reactive oxygen species content,decreasing apoptosis by inhibiting CDKN1A and promoting CDK2 and CDK4 expression levels. 展开更多
关键词 Danlu Tongdu lumbar spinal stenosis reactive oxygen species cell apoptosis
下载PDF
Research progress on reactive oxygen species production mechanisms in tumor sonodynamic therapy
12
作者 He-Qin Dong Xiao-Feng Fu +1 位作者 Min-Yan Wang Jiang Zhu 《World Journal of Clinical Cases》 SCIE 2023年第22期5193-5203,共11页
In recent years,because of the growing desire to improve the noninvasiveness and safety of tumor treatments,sonodynamic therapy has gradually become a popular research topic.However,due to the complexity of the therap... In recent years,because of the growing desire to improve the noninvasiveness and safety of tumor treatments,sonodynamic therapy has gradually become a popular research topic.However,due to the complexity of the therapeutic process,the relevant mechanisms have not yet been fully elucidated.One of the widely accepted possibilities involves the effect of reactive oxygen species.In this review,the mechanism of reactive oxygen species production by sonodynamic therapy(SDT)and ways to enhance the sonodynamic production of reactive oxygen species are reviewed.Then,the clinical application and limitations of SDT are discussed.In conclusion,current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen,exhibit biological safety,and promote the clinical transformation of sonodynamic therapy. 展开更多
关键词 Sonodynamic therapy reactive oxygen species HYPOXIC Tumor Microenvironment Sonosensitizer
下载PDF
Evaluation of Reactive Oxygen Species (ROS) Generated on the Surface of Copper Using Chemiluminesence
13
作者 Ken Hirota Hiroya Tanaka +4 位作者 Taika Maeda Kazuhiko Tsukagoshi Hiroshi Kawakami Takashi Ozawa Masahiko Wada 《Materials Sciences and Applications》 2023年第10期482-499,共18页
The antibacterial activity of copper is well-known from an ancient civilization, however, its biocidal mechanism has not been necessarily elucidated. Notwithstanding up to now, mainly 4 processes have been proposed. A... The antibacterial activity of copper is well-known from an ancient civilization, however, its biocidal mechanism has not been necessarily elucidated. Notwithstanding up to now, mainly 4 processes have been proposed. Among them, it is cleared that 4 kinds of reactive oxygen species (ROS): hydroxyl radical ·OH, hydrogen per oxide H<sub>2</sub>O<sub>2</sub>, superoxide anion ·O<sup>-</sup>2</sub></sub>   and singlet oxygen <sup>1</sup>O<sub>2</sub>, play an important role for contact-killing of bacteria, viruses and fungi. In this paper, generation of ROS on the surfaces of copper plates heated from room temperature to 673 K for 4.2 × 10<sup>2</sup> s in air, was investigated using the chemiluminescence. ROS have been evaluated by selecting the most suitable scavengers, such as 2-propanol for ·OH, sodium pyruvate for H<sub>2</sub>O<sub>2</sub>, nitro blue tetrazolium for ·O<sup>-</sup>2</sub></sub>,  and sodium azide NaN<sub>3</sub> for <sup>1</sup>O<sub>2</sub>. At the same time the outermost surface of copper, on which thin film of cuprous oxide Cu<sub>2</sub>O was first formed and then cupric oxide CuO was laminated on Cu<sub>2</sub>O, was examined by thin-film XRD and TEM analysis to estimate the amounts and kinds of copper oxides. It was found that the most amounts of ROS were obtained for the 573 K-heated Cu plate and they were composed of ·OH, H<sub>2</sub>O<sub>2</sub>, and ·O<sup>-</sup>2.</sub></sub>. 展开更多
关键词 COPPER Microbial Activity reactive oxygen species CHEMILUMINESCENCE SCAVENGERS
下载PDF
Decreased osteogenesis of adult mesenchymal stem cel s by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis 被引量:16
14
作者 Jiali Tan Xin Xu +4 位作者 Zhongchun Tong Jiong lin Qiujun Yu Yao Lin Wei Kuang 《Bone Research》 SCIE CAS CSCD 2015年第1期46-51,共6页
Age related defect of the osteogenic differentiation of mesenchymal stem cells(MSCs) plays a key role in osteoporosis. Mechanical loading is one of the most important physical stimuli for osteoblast differentiation.... Age related defect of the osteogenic differentiation of mesenchymal stem cells(MSCs) plays a key role in osteoporosis. Mechanical loading is one of the most important physical stimuli for osteoblast differentiation.Here, we compared the osteogenic potential of MSCs from young and adult rats under three rounds of 2 h of cyclic stretch of 2.5% elongation at 1 Hz on 3 consecutive days. Cyclic stretch induced a significant osteogenic differentiation of MSCs from young rats, while a compromised osteogenesis in MSCs from the adult rats.Accordingly, there were much more reactive oxygen species(ROS) production in adult MSCs under cyclic stretch compared to young MSCs. Moreover, ROS scavenger N-acetylcysteine rescued the osteogenic differentiation of adult MSCs under cyclic stretch. Gene expression analysis revealed that superoxide dismutase 1(SOD1) was significantly downregulated in those MSCs from adult rats. In summary, our data suggest that reduced SOD1 may result in excessive ROS production in adult MSCs under cyclic stretch, and thus manipulation of the MSCs from the adult donors with antioxidant would improve their osteogenic ability. 展开更多
关键词 MSCs Decreased osteogenesis of adult mesenchymal stem cel s by reactive oxygen species under cyclic stretch ROS STEM
下载PDF
Role of Reactive Oxygen Species in Triptolide-induced Apoptosis of Renal Tubular Cells and Renal Injury in Rats 被引量:15
15
作者 杨帆 卓荦 +3 位作者 Sunnassee Ananda 孙婷怡 李上勋 刘良 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第3期335-341,共7页
This study investigated the role of reactive oxygen species(ROS) in the pathogenesis of triptolide-induced renal injury in vivo.Rats were randomly divided into 4 groups(n=5 in each):triptolide group in which the ... This study investigated the role of reactive oxygen species(ROS) in the pathogenesis of triptolide-induced renal injury in vivo.Rats were randomly divided into 4 groups(n=5 in each):triptolide group in which the rats were intraperitoneally injected with triptolide solution at a dose of 1 mg/kg of body weight on day 8;control group in which the rats received a single intraperitoneal injection of 0.9% physiological saline on day 8;vitamin C group in which the rats were pretreated with vitamin C by gavage at a dose of 250 mg/kg of body weight per day for 7 days before the same treatment as the control group on day 8;triptolide+vitamin C group in which the rats were first subjected to an oral administration of vitamin C at a dose of 250 mg/kg of body weight per day for 7 days,and then to the same treatment as the triptolide group on day 8.All the rats were sacrificed on day 10.Blood samples were collected for detection of plasma creatinine(Pcr) and plasma urea nitrogen(PUN) concentrations.Both kidneys were removed.The histological changes were measured by haematoxylin-eosin(HE) staining.The production of ROS was determined by detecting the fluorescent intensity of the oxida-tion-sensitive probe rhodamine 123 in renal tissue.Renal malondialdehyde(MDA) content was meas-ured to evaluate lipid peroxidation level in renal tissue.TUNEL staining was performed to assess apop-tosis of renal tubular cells.Renal expression of apoptosis-related proteins Bcl-2,Bax,Bid,Bad,Fas and FasL,as well as corresponding encoding genes were assessed by Western Blotting and real-time PCR.The results showed that triptolide treatment promoted the generation of a great amount of ROS,up-regulated the expression of Bax,Bid,Bad,Fas and FasL at both protein and mRNA levels,as well as the ratio of Bax to Bcl-2,and caused the apoptosis of renal tubular cells and renal injury.However,pretreatment with an antioxidant,vitamin C,significantly reduced the generation of ROS and effectively inhibited the triptolide-induced apoptosis of renal tubular cells and renal injury.It was concluded that ROS plays a critical role in triptolide-induced apoptosis of renal tubular cells and renal injury.The protective administration of vitamin C may help alleviate triptolide-induced renal injury and nephrotoxicity. 展开更多
关键词 TRIPTOLIDE reactive oxygen species APOPTOSIS renal injury
下载PDF
Effects of Water Stress on Reactive Oxygen Species Generation and Protection System in Rice During Grain-Filling Stage 被引量:9
16
作者 WANG He-zheng ZHANG Lian-he +4 位作者 MA Jun LI Xu-yi LI Yan ZHANG Rong-ping WANG Ren-quan 《Agricultural Sciences in China》 CAS CSCD 2010年第5期633-641,共9页
Rice is one of the main staple food crops in the world, but it may suffer serious water stress during growth period. Water stress during grain filling results in decreased grain yeild, but its mechanism generating and... Rice is one of the main staple food crops in the world, but it may suffer serious water stress during growth period. Water stress during grain filling results in decreased grain yeild, but its mechanism generating and scavenging the active oxygen is unclear under continuance of the water stress. The experiment was carried out in growth chamber to investigate the effects of water stress on the production of superoxide free radical (O2), hydrogen peroxide (H202), malondialdehyde (MDA), reduced glutathione (GSH), ascorbic acid (AsA), and antioxidative enzyme activities in three rice hybrids with differing drought resistant under both normal and drought conditions during grain-filling stage. The results showed that water stress aggravated the membrane lipid peroxidation in rice leaves, which was more severe in less drought resistant hybrids than that in more tolerant ones. Also O2' and H2O2 accumulated more rapidly in less drought resistant hybrids than that in more tolerant ones. During water stress, decreases of GSH, AsA, chlorophyll, and relative water contents in more drought resistant hybrids were obvious less than those in less tolerant ones. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in/eaves increased obviously in 0-14 d after heading and subsequently decreased rapidly, and those in more drought resistant hybrids were more than those in less tolerant ones. The results showed that changes of O2, H2O2, MDA, GSH, and AsA contents and antioxidative enzyme activities correlated significantly to drought resistance of rice hybrids, and more drought resistant hybrids possessed high ant oxidation capacity. 展开更多
关键词 RICE water stress reactive oxygen species protection system
下载PDF
Homeopathic mother tincture of Phytolacca decandra induces apoptosis in skin melanoma cells by activating caspase-mediated signaling via reactive oxygen species elevation 被引量:5
17
作者 Samrat Ghosh Kausik Bishayee +5 位作者 Avijit Paul Avinaba Mukherjee Sourav Sikdar Debrup Chakraborty Naoual Boujedaini Anisur Rahman Khuda-Bukhsh 《Journal of Integrative Medicine》 SCIE CAS CSCD 2013年第2期116-124,共9页
OBJECTIVE: Preventive measures against skin melanoma like chemotherapy are useful but suffer from chronic side effects and drug resistance. Ethanolic extract of Phytolacca decandra (PD), used in homeopathy for the ... OBJECTIVE: Preventive measures against skin melanoma like chemotherapy are useful but suffer from chronic side effects and drug resistance. Ethanolic extract of Phytolacca decandra (PD), used in homeopathy for the treatment of various ailments like chronic rheumatism, regular conjunctivitis, psoriasis, and in some skin diseases was tested for its possible anticancer potential. METHODS: Cytotoxicity of the drug was tested by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay on both normal (peripheral blood mononuclear cells) and A375 cells. Fluorescence microscopic study of 4',6-diamidino-2-phenylindole dihydrochloride-stained cells was conducted for DNA fragmentation assay, and changes in cellular morphology, if any, were also recorded. Lactate dehydrogenase activity assay was done to evaluate the percentages of apoptosis and necrosis. Reactive oxygen species (ROS) accumulation, if any, and expression study of apoptotic genes also were evaluated to pin-point the actual events of apoptosis. RESULTS: Results showed that PD administration caused a remarkable reduction in proliferation of A375 cells, without showing much cytotoxicity on peripheral blood mononuclear cells. Generation of ROS and DNA damage, which made the cancer cells prone to apoptosis, were found to be enhanced in PD-treated cells. These results were duly supported by the analytical data on expression of different cellular and nuclear proteins, as for example, by down- regulation of Akt and Bcl-2, up-regulation of p53, Bax and caspase 3, and an increase in number of cell deaths by apoptosis in A375 cells. CONCLUSION: Overall results demonstrate anticancer potentials of PD on A375 cells through activation of caspase-mediated signaling and ROS generation. 展开更多
关键词 Phytolacca decandra skin neoplasms reactive oxygen species APOPTOSIS gene expression
下载PDF
Effects of Zinc Deficiency and Drought on Plant Growth and Metabolism of Reactive Oxygen Species in Maize (Zea mays L.) 被引量:6
18
作者 WANG Hong JIN Ji-yun 《Agricultural Sciences in China》 CAS CSCD 2007年第8期988-995,共8页
The combinative effects of applied zinc (Zn) and soil moisture on the plant growth, Zn uptake, and the metabolism of reactive oxygen species (ROS) in maize (Zea mays L.) plants were examined through two pot expe... The combinative effects of applied zinc (Zn) and soil moisture on the plant growth, Zn uptake, and the metabolism of reactive oxygen species (ROS) in maize (Zea mays L.) plants were examined through two pot experiments under greenhouse conditions. Maize variety Zhongdan 9409 was used. In experiment 1, maize plants were grown in cumulic cinnamon soil with five Zn treatments (0, 3.0, 9.0, 27.0, and 81.0 mg Zn kg^-1 soil). Three treatments of soil moisture including serious drought, mild drought, and adequate water supply were set at 30-35%, 40-45%, and 70-75% (w/w) of soil saturated water content, respectively. Soil saturated water content was 36% (w/w). The dry matter weights of shoots were enhanced by Zn application and adequate water supply. There was no apparent difference in plant growth among Zn application rates from 3.0 to 81.0 mg Zn kg^-1 soil. The increases of plant growth and Zn uptake due to Zn application were found more significant under well-watered condition than under drying condition. In experiment 2, two levels of Zn (0 and 5.0 mg Zn kg^-1 soil) and soil moisture regimen (40-45% and 70-75% of soil saturated water content, respectively) were set. Zn deficiency or water stress resulted in higher concentrations of O2^- and malondiadehyde in the first fully expanded leaves. Zn deficiency lowered the activity of superoxide dismutase (SOD, EC 1.15.1.1) in leaves. Drought stress increased SOD activity in leaves regardless of Zn supply. The activity of guaiacol peroxidase (POD, ECI.11.1.11) was found to be enhanced by Zn supply only in well-watered leaves. Zinc deficiency or water stress had little effect on the activity of catalase (CAT, EC 1.11.1.6). The higher ROS level in early maize leaves due to water stress seemed not to be alleviated or lowered partially by Zn application. However, Zn fertilizer was recommended to apply to maize plants irrigated or supplied with adequate water, otherwise Zn deficiency would reduce the water use for plant biomass production. 展开更多
关键词 DROUGHT MAIZE reactive oxygen species zinc deficiency
下载PDF
Changes of Reactive Oxygen Species and Related Enzymes in Mitochondria Respiratory Metabolism During the Ripening of Peach Fruit 被引量:8
19
作者 KAN Juan,WANG Hong-mei,JIN Chang-hai and XIE Hai-yan College of Food Science and Engineering,Yangzhou University,Yangzhou 225127,P.R.China 《Agricultural Sciences in China》 CSCD 2010年第1期138-146,共9页
The fruits of peach cultivar Yuhua 3 were used as materials to investigate the changes of active oxygen and related enzymes in mitochondria respiratory metabolism during ripening of peach fruit, involving their influe... The fruits of peach cultivar Yuhua 3 were used as materials to investigate the changes of active oxygen and related enzymes in mitochondria respiratory metabolism during ripening of peach fruit, involving their influence on the proceeding of peach fruit senescence. The results showed that the large decrease in firmness occurred between maturity II and IV. The decrease in firmness coincided with an increase in respiratory intensity. Obvious peaks of respiratory intensity lagging to the rapid change of fruit firmness could be shown during peach ripening. Reactive oxygen species (ROS) had a cumulative process and positively correlated with respiratory intensity. During peach ripening, the content of Ca^2+ increased, the activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), H+-ATPase, and Ca^2+-ATPase decreased varying in different degree at the later step of ripening. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration, namely, both ROS metabolism and mitochondrial respiration probably played important roles in ripening and senescing of peach fruit. 展开更多
关键词 peach fruit RIPENING reactive oxygen species enzymes related to mitochondria respiratory metabolism
下载PDF
High glucose induces myocardial cell injury through increasing reactive oxygen species production 被引量:3
20
作者 Yu-Jun Wang Xiao-Yu Lyu Li Yu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2018年第1期63-67,共5页
Objective: To study the injury effect and molecular mechanism of high glucose on myocardial cells. Methods: Myocardial cells H9 c2 were cultured and divided into the control group treated with DMEM containing 5.5 mmol... Objective: To study the injury effect and molecular mechanism of high glucose on myocardial cells. Methods: Myocardial cells H9 c2 were cultured and divided into the control group treated with DMEM containing 5.5 mmol/L glucose, the high glucose group treated with DMEM containing 35 mmol/L glucose, and the N-acetylcysteine(NAC) group pre-treated with 1000μmol/L NAC and treated with DMEM containing 1000 μmol/L NAC and 35 mmol/L glucose.The production of ROS and the expression of mitochondria pathway apoptosis molecules in cells as well as the contents of collagen and collagen metabolism molecules were measured.Results: After 8 h, 16 h and 24 h of treatment, ROS RFU as well as Bax, CytC, Caspase-3 and Caspase-9 protein expression in cells and Col-I, Col-Ⅲ, PINP and PⅢNP protein levels in culture medium of high glucose group were higher than those of control group, Bcl-2 protein expression were lower than those of control group, but CTX-Ⅰ protein levels in culture medium were not significantly different from those of control group; after 24 h of treatment, Bax, CytC,Caspase-3 and Caspase-9 protein expression in cells as well as Col-Ⅰ, Col-Ⅲ, PINP and PIIINP protein levels in culture medium of NAC group were lower than those of high glucose group whereas Bcl-2 protein expression was higher than that of high glucose group. Conclusions:High glucose can induce myocardial cell apoptosis, increase collagen synthesis and accelerate interstitial fibrosis by increasing the production of reactive oxygen species. 展开更多
关键词 Diabetic cardiomyopathy High glucose Myocardial cells reactive oxygen species APOPTOSIS COLLAGEN
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部