本文阐述了纯电动汽车REESS(On-board Rechargeable Energy Storage System,车载可充电储能系统)的电压、电流的采集原理及精度测评方法,并说明该方法在新标准的能量消耗量与续驶里程试验以及大数据云端数据构建中的应用。使用横河WT30...本文阐述了纯电动汽车REESS(On-board Rechargeable Energy Storage System,车载可充电储能系统)的电压、电流的采集原理及精度测评方法,并说明该方法在新标准的能量消耗量与续驶里程试验以及大数据云端数据构建中的应用。使用横河WT3000E功率分析仪高精度设备与车辆CAN网络信号采集的电压、电流结果进行对比分析,证明车辆传感器的精度及有效性。通过设置不同的采样频率对数据线性插值,为大数据构建中,REESS的电压电流采样频率提供建议。分析结果表明,车载传感器精度满足试验精度要求,大数据应用中,采样频率应要高于1Hz以满足能耗分析精度要求。展开更多
针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用...针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。展开更多
文摘本文阐述了纯电动汽车REESS(On-board Rechargeable Energy Storage System,车载可充电储能系统)的电压、电流的采集原理及精度测评方法,并说明该方法在新标准的能量消耗量与续驶里程试验以及大数据云端数据构建中的应用。使用横河WT3000E功率分析仪高精度设备与车辆CAN网络信号采集的电压、电流结果进行对比分析,证明车辆传感器的精度及有效性。通过设置不同的采样频率对数据线性插值,为大数据构建中,REESS的电压电流采样频率提供建议。分析结果表明,车载传感器精度满足试验精度要求,大数据应用中,采样频率应要高于1Hz以满足能耗分析精度要求。
文摘针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。