As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly...As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly and accurately is a significant, popular and meaningful task.Classification methods based on laser-induced breakdown spectroscopy(LIBS) have been reported in recent years. Although LIBS is an advanced detection technology, it is necessary to combine it with some algorithm to reach the goal of rapid and accurate classification. As an important machine learning method, the random forest(RF) algorithm plays a great role in pattern recognition and material classification. This paper introduces a rapid classification method of Al alloy based on LIBS and the RF algorithm. The results show that the best accuracy that can be reached using this method to classify Al alloy samples is 98.59%, the average of which is 98.45%. It also reveals through the relationship laws that the accuracy varies with the number of trees in the RF and the size of the training sample set in the RF. According to the laws, researchers can find out the optimized parameters in the RF algorithm in order to achieve,as expected, a good result. These results prove that LIBS with the RF algorithm can exactly classify Al alloy effectively, precisely and rapidly with high accuracy, which obviously has significant practical value.展开更多
Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared...Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.展开更多
基金supported by National High Technology Research and Development Program of China (863 Program. No. 2013AA102402)
文摘As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly and accurately is a significant, popular and meaningful task.Classification methods based on laser-induced breakdown spectroscopy(LIBS) have been reported in recent years. Although LIBS is an advanced detection technology, it is necessary to combine it with some algorithm to reach the goal of rapid and accurate classification. As an important machine learning method, the random forest(RF) algorithm plays a great role in pattern recognition and material classification. This paper introduces a rapid classification method of Al alloy based on LIBS and the RF algorithm. The results show that the best accuracy that can be reached using this method to classify Al alloy samples is 98.59%, the average of which is 98.45%. It also reveals through the relationship laws that the accuracy varies with the number of trees in the RF and the size of the training sample set in the RF. According to the laws, researchers can find out the optimized parameters in the RF algorithm in order to achieve,as expected, a good result. These results prove that LIBS with the RF algorithm can exactly classify Al alloy effectively, precisely and rapidly with high accuracy, which obviously has significant practical value.
基金supported by the National Natural Science Foundation of China(No.11905074).
文摘Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.