Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmosphericpressure glow discharge(RF-APGD) pla...Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmosphericpressure glow discharge(RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin–dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester.The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin–dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.展开更多
An RF compensated cylindrical Langmuir probe system has been developed and used to characterize an RF capacitive two temperature plasma discharge in a stochastic mode. The novelty of the work presented here is the use...An RF compensated cylindrical Langmuir probe system has been developed and used to characterize an RF capacitive two temperature plasma discharge in a stochastic mode. The novelty of the work presented here is the use of the driven electrode (cathode) without ground shield. Measurements of the electron energy distribution function (EEDF) and plasma parameters were achieved under the following conditions: 50 W of RF power and 5× 10-2 mbar of argon pressure. The probe measurements are performed at 3 cm above the electrode and the probe was shifted radially (r direction) from the center (r = 0 cm) of the inter-electrodes region towards the chamber wall (R = 10.75 cm). The results show that the EEDF is bi-Maxwellian and its shape remains the same through the scanned region. The farther the probe from the central region, the lower the EEDF maximum. The plasma density is observed to decrease according to a Gaussian profile along the radial direction and falls to 50% of its maximum when close to the cathode edge (r = 5.5 cm). At the same time the effective electron temperature remains constant for r〈4 cm and increases for r≥4 cm. The high-temperature and low-temperature electrons' densities and temperatures are also discussed in the article.展开更多
The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, a...The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.展开更多
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
In this study,numerical simulation and discharge current tests were conducted on an inductively coupled radio frequency(RF)plasma cathode.Numerical simulations and experimental measurements were performed to study the...In this study,numerical simulation and discharge current tests were conducted on an inductively coupled radio frequency(RF)plasma cathode.Numerical simulations and experimental measurements were performed to study the factors influencing the electron extraction characteristics,including the gas type,gas flow,input power and extracting voltage.The simulation results were approximately consistent with the experimental results.We experimentally found that the RF input power mainly determines the extracted electron current.An electron current greater than 1 A was acquired at 270 W(RF input power),2.766 sccm(xenon gas).Our results prove that an inductively coupled RF plasma cathode can be reasonable and feasible,particularly for low power electric propulsion devices.展开更多
By using a longitudinal static magnetic field, we have shown that it is possible to excite an intensive plasma in a simple stainless steel tube which is connected with a RF power supply. Under certain conditions, the ...By using a longitudinal static magnetic field, we have shown that it is possible to excite an intensive plasma in a simple stainless steel tube which is connected with a RF power supply. Under certain conditions, the very bright Ar II lines were excited. The emission intensities of Ar II lines were increased with the increase in RF power, magnetic field, and the decrease in argon pressure. As the plasma-sheath boundary oscillating under the RF voltage, the plasma column is periodically compressed by the oscillating boundary.展开更多
Ni-containing carbon films were prepared by rf glow discharge decomposition of methane and nickel carbonyl. The deposited des contained C, Ni, H, O and small amounts of N. Nickel existed in forms of metric Ni and Ni2O...Ni-containing carbon films were prepared by rf glow discharge decomposition of methane and nickel carbonyl. The deposited des contained C, Ni, H, O and small amounts of N. Nickel existed in forms of metric Ni and Ni2O3. The oxidation of nickel mainly occurred on film surface. With lower Ni contents, the film maintained the structure of DLC film. With the increase of Ni content, the films showed some crystalline features of Ni and Ni2O3.展开更多
A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characterist...A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.展开更多
The effect of a negative DC bias,|V_(dc)|,on the electrical parameters and discharge mode is investigated experimentally in a radiofrequency(RF)capacitively coupled Ar plasma operated at different RF voltage amplitude...The effect of a negative DC bias,|V_(dc)|,on the electrical parameters and discharge mode is investigated experimentally in a radiofrequency(RF)capacitively coupled Ar plasma operated at different RF voltage amplitudes and gas pressures.The electron density is measured using a hairpin probe and the spatio-temporal distribution of the electron-impact excitation rate is determined by phase-resolved optical emission spectroscopy.The electrical parameters are obtained based on the waveforms of the electrode voltage and plasma current measured by a voltage probe and a current probe.It was found that at a low|V_(dc)|,i.e.inα-mode,the electron density and RF current decline with increasing|V_(dc)|;meanwhile,the plasma impedance becomes more capacitive due to a widened sheath.Therefore,RF power deposition is suppressed.When|V_(dc)|exceeds a certain value,the plasma changes toα–γhybrid mode(or the discharge becomes dominated by theγ-mode),manifesting a drastically growing electron density and a moderately increasing RF current.Meanwhile,the plasma impedance becomes more resistive,so RF power deposition is enhanced with|V_(dc)|.We also found that the electrical parameters show similar dependence on|V_(dc)|at different RF voltages,andα–γmode transition occurs at a lower|V_(dc)|at a higher RF voltage.By increasing the pressure,plasma impedance becomes more resistive,so RF power deposition and electron density are enhanced.In particular,theα–γmode transition tends to occur at a lower|V_(dc)|with increase in pressure.展开更多
The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of ...The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of the gas temperature (Tg) in both consistent rf discharge and pulse-modulated rf discharge were compared. The results indicated that Tg decreases considerably with the pulse-modulated power, and the elastic collision mechanism plays a more important role in the gas heating change. Secondly, the influences of the duty cycle on the discharge parameters, especially on the Tg, were studied. It was found that Tg decreases almost linearly with the reduction of the duty cycle, and there exists one ideal value of the duty cycle, by which both the Tg can be adjusted and the glow mode can be sustained. Thirdly, the discharge mode changing from αto γ mode in the pulse-modulated rf discharge was investigated, the spatial distributions of Tg in the two modes show different features and the ion Joule heating is more important during the mode transition.展开更多
It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effect...It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effects of the gas flow rate on the plasma parameters are calculated and the results show that: with an increasing flow rate, the total ion(N+2, N+) density decreases, the mean sheath thickness becomes wider, the radial electric field in the sheath and the axial electric field show an increase, and the energies of both kinds of nitrogen ions increase;and, as the axial ion current density that is moving toward the ground electrode increases, the ion current density near the ground electrode increases. The simulation results will provide a useful reference for plasma jet technology involving rf hollow cathode discharges in N2.展开更多
A two-dimensional PIC/MCC model is developed to simulate the nitrogen radio frequency hollow cathode discharge(rf-HCD).It is found that both the sheath oscillation heating and the secondary electron heating together...A two-dimensional PIC/MCC model is developed to simulate the nitrogen radio frequency hollow cathode discharge(rf-HCD).It is found that both the sheath oscillation heating and the secondary electron heating together play a role to maintain the rf-HCD under the simulated conditions.The mean energy of ions(N+_2,N+)in the negative glow region is greater than the thermal kinetic energy of the molecular gas(N2),which is an important characteristic of rf-HCD.During the negative portion of the hollow electrode voltage cycle,electrons mainly follow pendulum movement and produce a large number of ionization collisions in the plasma region.During the positive voltage of the rf cycle,the axial electric field becomes stronger and its direction is pointing to the anode(substrate),therefore the ions move toward the anode(substrate)via the axial electric field acceleration.Compared with dc-HCD,rf-HCD is more suitable for serving as a plasma jet nozzle at low pressure.展开更多
Atmospheric pressure pulse-modulated radio-frequency(rf) plasmas have drawn growing attention due to their potential in applications.By selecting appropriate modulation parameters,the diffused and large-volume plasma ...Atmospheric pressure pulse-modulated radio-frequency(rf) plasmas have drawn growing attention due to their potential in applications.By selecting appropriate modulation parameters,the diffused and large-volume plasma can be generated in the pulse-modulated rf plasma with plenty of reactive oxygen species,which is essential for the biomedical application of helium–oxygen plasmas.In this paper,by means of a fluid model,the formation of the peak current in the first period(PCFP) in a pulse-modulated rf helium–oxygen discharge driven by a sinusoidal voltage is discussed,the existence of a reverse field near the anode caused by the negative and positive charges contributes greatly to the mechanism of PCFP.In the simulation,as oxygen admixture increases,the negative ions of O~- and O~-become dominative anions in the sheath region,which can’t be driven to the anode very quickly to build a reverse field,thus the PCFP eventually disappears.This study can effectively enhance the understanding of different transportation behavior of heavy negative ions and electrons,and further optimize pulsemodulated rf discharges with helium–oxygen mixtures in various applications.展开更多
Optical emission spectroscopy and Langmuir Probe diagnostics were incorporated into the experiment, in which dust particles were formed in-situ by using reactive mixture gases (SiHa/C2H4/Ar) in a radio-frequency (R...Optical emission spectroscopy and Langmuir Probe diagnostics were incorporated into the experiment, in which dust particles were formed in-situ by using reactive mixture gases (SiHa/C2H4/Ar) in a radio-frequency (RF) discharge plasma. The excitation temperature was first calculated by combining several optical emission spectra of argon lines and using a Boltzmann distribution to fit the experimental data, then the excitation temperature as functions of both gas pressure and RF power in SiH4/C2Ha/Ar discharges for different discharge conditions were obtained. Correspondingly, based on the measurement of the electron temperature by a Langmuir probe, the excitation temperature was compared with the electron temperature, and some discussions were presented. Finally the emission intensities of spectral lines of Si 390.6 ran, Si2+ 380.6 nm and C+ 426.7 nm were measured and presented as functions of pressure, RF power and flow rate of SiH4/C2H4.展开更多
In an almost cubical reactor 90 1 in volume which is intended to deposit organic polymers by plasma-enhanced chemical vapor deposition (PECVD), microwave power is coupled into the volume via a quartz window which ex...In an almost cubical reactor 90 1 in volume which is intended to deposit organic polymers by plasma-enhanced chemical vapor deposition (PECVD), microwave power is coupled into the volume via a quartz window which extends to approximately 1/10 of the sidewall area. Since the plasma is excited locally, plasma parameters like electron temperature and plasma density are expected to exhibit a spatial variation. The compilation of these plasma quantities has been accomplished with a bendable single Langmuir probe. To isolate the tungsten wire against its grounded housing tube, it was coated with polyparylene. After having compared this construction with our Langmuir probe, which has been now in use for more than a decade, we have taken data of more than half the volume of the reactor with argon and have found a definitive radial inhomogenity for all plasma parameters. To investigate whether this conduct can be determined applying optical emission spectroscopy, we improved our spectrometer which had been used for endpoint detection purposes and plasma diagnostics in chlorine-containing ambients where we could detect also a spatial dependence. This behavior is discussed in terms of Lieberman's global model.展开更多
Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP...Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP) source. Their plasma characteristics, such as electron density, electron temperature and the electron density spatial distribution profiles are investigated and compared experimentally at different gas pressures. It is found that under the condition of single RF discharge, the electron density distribution profiles show a 'convex' shape and 'saddle' shape at gas pressures of 3 mTorr and 150 mTorr respectively. This result can be attributed to the transition of electron kinetics from nonlocal to local kinetics with an increase in gas pressure. Moreover, in the operation of DC q- RF hybrid discharge at different gas pressures, the DC discharge has different effects on plasma uniformity. The plasma uniformity can be improved by modulating DC power at a high pressure of 150 mTorr where local electron kinetics is dominant, whereas plasma uniformity deteriorates at a low pressure of 3 mTorr where nonlocal electron kinetics prevails. This phenomenon, as analyzed, is due to the obvious nonlinear enhancement effect of electron density at the chamber center, and the inherent radial distribution difference in the electron density with single RF discharge at different gas pressures.展开更多
A cascade glow discharge in atmospheric helium was excited by a microsecond voltage pulse and a pulse-modulated radio frequency(RF) voltage, in which the discharge ignition dynamics of the RF discharge burst was inves...A cascade glow discharge in atmospheric helium was excited by a microsecond voltage pulse and a pulse-modulated radio frequency(RF) voltage, in which the discharge ignition dynamics of the RF discharge burst was investigated experimentally. The spatio-temporal evolution of the discharge, the ignition time and optical emission intensities of plasma species of the RF discharge burst were investigated under different time intervals between the pulsed voltage and RF voltage in the experiment. The results show that by increasing the time interval between the pulsed discharge and RF discharge burst from 5 μs to 20 μs, the ignition time of the RF discharge burst is increased from 1.6 μs to 2.0 μs, and the discharge spatial profile of RF discharge in the ignition phase changes from a double-hump shape to a bell-shape. The light emission intensity at 706 nm and 777 nm at different time intervals indicates that the RF discharge burst ignition of the depends on the number of residual plasma species generated in the pulsed discharges.展开更多
With the support by the National Natural Science Foundation of China,Dr Liu Yongxin(刘永新)and his coworkers at the Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),Schoo...With the support by the National Natural Science Foundation of China,Dr Liu Yongxin(刘永新)and his coworkers at the Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Physics and Optoelectronic Technology,Dalian University of Technology,observed,for the first time,the self-organized striated structures of the plasma emission in展开更多
基金supported by National Natural Science Foundation of China (Nos. 11475103 and 81200805)Beijing Natural Science Foundation (No. 7162204)
文摘Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmosphericpressure glow discharge(RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin–dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester.The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin–dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.
文摘An RF compensated cylindrical Langmuir probe system has been developed and used to characterize an RF capacitive two temperature plasma discharge in a stochastic mode. The novelty of the work presented here is the use of the driven electrode (cathode) without ground shield. Measurements of the electron energy distribution function (EEDF) and plasma parameters were achieved under the following conditions: 50 W of RF power and 5× 10-2 mbar of argon pressure. The probe measurements are performed at 3 cm above the electrode and the probe was shifted radially (r direction) from the center (r = 0 cm) of the inter-electrodes region towards the chamber wall (R = 10.75 cm). The results show that the EEDF is bi-Maxwellian and its shape remains the same through the scanned region. The farther the probe from the central region, the lower the EEDF maximum. The plasma density is observed to decrease according to a Gaussian profile along the radial direction and falls to 50% of its maximum when close to the cathode edge (r = 5.5 cm). At the same time the effective electron temperature remains constant for r〈4 cm and increases for r≥4 cm. The high-temperature and low-temperature electrons' densities and temperatures are also discussed in the article.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472306,51336011,and 51407197)
文摘The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
基金supported by Joint Fund for Equipment Preresearch and Aerospace Science and Technology(No.6141B061203)。
文摘In this study,numerical simulation and discharge current tests were conducted on an inductively coupled radio frequency(RF)plasma cathode.Numerical simulations and experimental measurements were performed to study the factors influencing the electron extraction characteristics,including the gas type,gas flow,input power and extracting voltage.The simulation results were approximately consistent with the experimental results.We experimentally found that the RF input power mainly determines the extracted electron current.An electron current greater than 1 A was acquired at 270 W(RF input power),2.766 sccm(xenon gas).Our results prove that an inductively coupled RF plasma cathode can be reasonable and feasible,particularly for low power electric propulsion devices.
文摘By using a longitudinal static magnetic field, we have shown that it is possible to excite an intensive plasma in a simple stainless steel tube which is connected with a RF power supply. Under certain conditions, the very bright Ar II lines were excited. The emission intensities of Ar II lines were increased with the increase in RF power, magnetic field, and the decrease in argon pressure. As the plasma-sheath boundary oscillating under the RF voltage, the plasma column is periodically compressed by the oscillating boundary.
文摘Ni-containing carbon films were prepared by rf glow discharge decomposition of methane and nickel carbonyl. The deposited des contained C, Ni, H, O and small amounts of N. Nickel existed in forms of metric Ni and Ni2O3. The oxidation of nickel mainly occurred on film surface. With lower Ni contents, the film maintained the structure of DLC film. With the increase of Ni content, the films showed some crystalline features of Ni and Ni2O3.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.
基金financially supported by National Natural Science Foundation of China(NSFC)(Nos.12275043 and 11935005)the Fundamental Research Funds for the Central Universities(No.DUT21TD104)China Scholarship Council(No.202106060085)。
文摘The effect of a negative DC bias,|V_(dc)|,on the electrical parameters and discharge mode is investigated experimentally in a radiofrequency(RF)capacitively coupled Ar plasma operated at different RF voltage amplitudes and gas pressures.The electron density is measured using a hairpin probe and the spatio-temporal distribution of the electron-impact excitation rate is determined by phase-resolved optical emission spectroscopy.The electrical parameters are obtained based on the waveforms of the electrode voltage and plasma current measured by a voltage probe and a current probe.It was found that at a low|V_(dc)|,i.e.inα-mode,the electron density and RF current decline with increasing|V_(dc)|;meanwhile,the plasma impedance becomes more capacitive due to a widened sheath.Therefore,RF power deposition is suppressed.When|V_(dc)|exceeds a certain value,the plasma changes toα–γhybrid mode(or the discharge becomes dominated by theγ-mode),manifesting a drastically growing electron density and a moderately increasing RF current.Meanwhile,the plasma impedance becomes more resistive,so RF power deposition is enhanced with|V_(dc)|.We also found that the electrical parameters show similar dependence on|V_(dc)|at different RF voltages,andα–γmode transition occurs at a lower|V_(dc)|at a higher RF voltage.By increasing the pressure,plasma impedance becomes more resistive,so RF power deposition and electron density are enhanced.In particular,theα–γmode transition tends to occur at a lower|V_(dc)|with increase in pressure.
基金Project supported by the National Natural Science Foundation of China(Granted Nos.11405022 and 11475040)Dalian High Level Talent Innovation Support Plan,China(Grant No.2015R050)
文摘The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of the gas temperature (Tg) in both consistent rf discharge and pulse-modulated rf discharge were compared. The results indicated that Tg decreases considerably with the pulse-modulated power, and the elastic collision mechanism plays a more important role in the gas heating change. Secondly, the influences of the duty cycle on the discharge parameters, especially on the Tg, were studied. It was found that Tg decreases almost linearly with the reduction of the duty cycle, and there exists one ideal value of the duty cycle, by which both the Tg can be adjusted and the glow mode can be sustained. Thirdly, the discharge mode changing from αto γ mode in the pulse-modulated rf discharge was investigated, the spatial distributions of Tg in the two modes show different features and the ion Joule heating is more important during the mode transition.
基金supported by the Natural Science Foundation of Hebei Province,China(No.A2012205072)
文摘It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effects of the gas flow rate on the plasma parameters are calculated and the results show that: with an increasing flow rate, the total ion(N+2, N+) density decreases, the mean sheath thickness becomes wider, the radial electric field in the sheath and the axial electric field show an increase, and the energies of both kinds of nitrogen ions increase;and, as the axial ion current density that is moving toward the ground electrode increases, the ion current density near the ground electrode increases. The simulation results will provide a useful reference for plasma jet technology involving rf hollow cathode discharges in N2.
基金supported by Natural Science Foundation of Hebei Province,China(No.A2012205072)
文摘A two-dimensional PIC/MCC model is developed to simulate the nitrogen radio frequency hollow cathode discharge(rf-HCD).It is found that both the sheath oscillation heating and the secondary electron heating together play a role to maintain the rf-HCD under the simulated conditions.The mean energy of ions(N+_2,N+)in the negative glow region is greater than the thermal kinetic energy of the molecular gas(N2),which is an important characteristic of rf-HCD.During the negative portion of the hollow electrode voltage cycle,electrons mainly follow pendulum movement and produce a large number of ionization collisions in the plasma region.During the positive voltage of the rf cycle,the axial electric field becomes stronger and its direction is pointing to the anode(substrate),therefore the ions move toward the anode(substrate)via the axial electric field acceleration.Compared with dc-HCD,rf-HCD is more suitable for serving as a plasma jet nozzle at low pressure.
基金supported by National Natural Science Foundation of China(No.11975142)。
文摘Atmospheric pressure pulse-modulated radio-frequency(rf) plasmas have drawn growing attention due to their potential in applications.By selecting appropriate modulation parameters,the diffused and large-volume plasma can be generated in the pulse-modulated rf plasma with plenty of reactive oxygen species,which is essential for the biomedical application of helium–oxygen plasmas.In this paper,by means of a fluid model,the formation of the peak current in the first period(PCFP) in a pulse-modulated rf helium–oxygen discharge driven by a sinusoidal voltage is discussed,the existence of a reverse field near the anode caused by the negative and positive charges contributes greatly to the mechanism of PCFP.In the simulation,as oxygen admixture increases,the negative ions of O~- and O~-become dominative anions in the sheath region,which can’t be driven to the anode very quickly to build a reverse field,thus the PCFP eventually disappears.This study can effectively enhance the understanding of different transportation behavior of heavy negative ions and electrons,and further optimize pulsemodulated rf discharges with helium–oxygen mixtures in various applications.
基金supported by the National Basic Research Program of China 973 Program (No. 2009GB107004)the Fundamental Research Funds for the Central Universities of China (No. ZYGX2010J056)
文摘Optical emission spectroscopy and Langmuir Probe diagnostics were incorporated into the experiment, in which dust particles were formed in-situ by using reactive mixture gases (SiHa/C2H4/Ar) in a radio-frequency (RF) discharge plasma. The excitation temperature was first calculated by combining several optical emission spectra of argon lines and using a Boltzmann distribution to fit the experimental data, then the excitation temperature as functions of both gas pressure and RF power in SiH4/C2Ha/Ar discharges for different discharge conditions were obtained. Correspondingly, based on the measurement of the electron temperature by a Langmuir probe, the excitation temperature was compared with the electron temperature, and some discussions were presented. Finally the emission intensities of spectral lines of Si 390.6 ran, Si2+ 380.6 nm and C+ 426.7 nm were measured and presented as functions of pressure, RF power and flow rate of SiH4/C2H4.
基金support financially by Germany's Federal Secretary of Education and Research(Nos.1715X04 and 1753X08)
文摘In an almost cubical reactor 90 1 in volume which is intended to deposit organic polymers by plasma-enhanced chemical vapor deposition (PECVD), microwave power is coupled into the volume via a quartz window which extends to approximately 1/10 of the sidewall area. Since the plasma is excited locally, plasma parameters like electron temperature and plasma density are expected to exhibit a spatial variation. The compilation of these plasma quantities has been accomplished with a bendable single Langmuir probe. To isolate the tungsten wire against its grounded housing tube, it was coated with polyparylene. After having compared this construction with our Langmuir probe, which has been now in use for more than a decade, we have taken data of more than half the volume of the reactor with argon and have found a definitive radial inhomogenity for all plasma parameters. To investigate whether this conduct can be determined applying optical emission spectroscopy, we improved our spectrometer which had been used for endpoint detection purposes and plasma diagnostics in chlorine-containing ambients where we could detect also a spatial dependence. This behavior is discussed in terms of Lieberman's global model.
基金supported by National Natural Science Foundation of China under Grant No. 11475038
文摘Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP) source. Their plasma characteristics, such as electron density, electron temperature and the electron density spatial distribution profiles are investigated and compared experimentally at different gas pressures. It is found that under the condition of single RF discharge, the electron density distribution profiles show a 'convex' shape and 'saddle' shape at gas pressures of 3 mTorr and 150 mTorr respectively. This result can be attributed to the transition of electron kinetics from nonlocal to local kinetics with an increase in gas pressure. Moreover, in the operation of DC q- RF hybrid discharge at different gas pressures, the DC discharge has different effects on plasma uniformity. The plasma uniformity can be improved by modulating DC power at a high pressure of 150 mTorr where local electron kinetics is dominant, whereas plasma uniformity deteriorates at a low pressure of 3 mTorr where nonlocal electron kinetics prevails. This phenomenon, as analyzed, is due to the obvious nonlinear enhancement effect of electron density at the chamber center, and the inherent radial distribution difference in the electron density with single RF discharge at different gas pressures.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11875104 and 12175036)。
文摘A cascade glow discharge in atmospheric helium was excited by a microsecond voltage pulse and a pulse-modulated radio frequency(RF) voltage, in which the discharge ignition dynamics of the RF discharge burst was investigated experimentally. The spatio-temporal evolution of the discharge, the ignition time and optical emission intensities of plasma species of the RF discharge burst were investigated under different time intervals between the pulsed voltage and RF voltage in the experiment. The results show that by increasing the time interval between the pulsed discharge and RF discharge burst from 5 μs to 20 μs, the ignition time of the RF discharge burst is increased from 1.6 μs to 2.0 μs, and the discharge spatial profile of RF discharge in the ignition phase changes from a double-hump shape to a bell-shape. The light emission intensity at 706 nm and 777 nm at different time intervals indicates that the RF discharge burst ignition of the depends on the number of residual plasma species generated in the pulsed discharges.
文摘With the support by the National Natural Science Foundation of China,Dr Liu Yongxin(刘永新)and his coworkers at the Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Physics and Optoelectronic Technology,Dalian University of Technology,observed,for the first time,the self-organized striated structures of the plasma emission in