Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of ...Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.展开更多
To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabr...To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.展开更多
We demonstrate that radio frequency(RF)magnetron sputtering technique can modify the perpendicular magnetic anisotropy(PMA)of Pt/Co/normal metal(NM)thin films.Influence of ion irradiation during RF magnetron sputterin...We demonstrate that radio frequency(RF)magnetron sputtering technique can modify the perpendicular magnetic anisotropy(PMA)of Pt/Co/normal metal(NM)thin films.Influence of ion irradiation during RF magnetron sputtering should not be neglected and it can weaken PMA of the deposited magnetic films.The magnitude of this influence can be controlled by tuning RF magnetron sputtering deposition conditions and the upper NM layer thickness.According to the stopping and range of ions in matter(SRIM)simulation results,defects such as displacement atoms and vacancies in the deposited film will increase after the RF magnetron sputtering,which can account for the weakness of PMA.The amplitude changes of the Hall resistance and the threshold current intensity of spin orbit torque(SOT)induced magnetization switching also can be modified.Our study could be useful for controlling magnetic properties of PMA films and designing new type of SOT-based spintronic devices.展开更多
The influence of amorphous TiO_2 seeding layers on the phase composition of lead magnesium niobate-lead titanate(0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3,PMN-PT) films deposited on Pt/Ti/SiO2/Si substrate by RF magnetron sputter...The influence of amorphous TiO_2 seeding layers on the phase composition of lead magnesium niobate-lead titanate(0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3,PMN-PT) films deposited on Pt/Ti/SiO2/Si substrate by RF magnetron sputtering was examined.The relation between seeding layer thickness and phase composition at different post annealing temperature was observed by XRD.The thickness of amorphous TiO2 seeding layer and post annealing temperature had remarkable effects on PMN-PT film phase composition.When amorphous seeding layer becomes thick,a new phase of Nb2O5 exists in the films.Only when the seeding layer thickness is suitable,the film with pure perovskite phase can be attained.展开更多
Sm and Gd co-doped Ceria (SGDC:Sm_(0.1)Gd_(0.1)Ce_(0.8)O_(1.90)) films as the electrolytes were investigated for the IT-SOFCs (intermediate-temperature solid oxide fuel cells).SGDC sensing films were successfully prep...Sm and Gd co-doped Ceria (SGDC:Sm_(0.1)Gd_(0.1)Ce_(0.8)O_(1.90)) films as the electrolytes were investigated for the IT-SOFCs (intermediate-temperature solid oxide fuel cells).SGDC sensing films were successfully prepared on the Al_2O_3 substrates by RF-magnetron sputtering.The relationship between sputtering parameters and film microstructure was discussed, and the optimum parameters were gained.The crystal structure analysis and surface morphologic observation of the SGDC films were carried out through X-ray diffraction (XRD) and scanning electron microscopy (SEM).The oxygen ion conductivity of the SGDC film was evaluated by AC impedance spectroscopy at the different temperatures.The XRD analysis shows that the SGDC films grow preferentially along the (111) compact plane.The crystallinity of the SGDC films is enhanced with the increase of the RF sputtering power from 150 W to 250 W.The oxygen ion conductivity of the SGDC was measured at the temperature from 600℃to 800℃in air by AC impedance spectroscopy.The result shows that a high oxygen ion conductivity of 2.44×10^(-2) S.cm^(-1) was achieved at 800℃.展开更多
Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are inve...Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are investigated.The structures of the xBI-(1-x)PT films are characterized by x-ray diffraction and scanning electron microscopy.The results indicate that the thin films are grown with mainly(001) orientation. The chemical compositions of the films are analyzed by scanning electron probe and the results indicate that the loss phenomena of Pb and Bi elements depend on the pressure and temperature during the sputtering process.The sputtering parameters including target composition, substrate temperature, and gas pressure are adjusted to obtain optimum sputtering conditions. To decrease leakage currents,2 mol% La2 O3 is doped in the targets. The P-E hysteresis loops show that the optimized xBI-(1-x)PT(x = 0.24) film has high ferroelectricities with remnant polarization2 Pr = 80μC/cm2 and coercive electric field 2 EC = 300 kV/cm. The Curie temperature is about 640℃. The results show that the films have optimum performance and will have wide applications.展开更多
Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate o...Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm-3 to 2.6 × 1019 cm-3. The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.展开更多
This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,att...This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,attributed to heightened plasma potential and initial emergent energy.Simultaneously,the positive ion flux escalates owing to amplified sputtering rates and electron density.Conversely,negative ions exhibit broad ion energy distribution functions(IEDFs)characterized by multiple peaks.These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential,alongside ion transport time.This elucidation finds validation in a one-dimensional model encompassing the initial ion energy.At higher RF power,negative ions surpassing 100 e V escalate in both flux and energy,posing a potential risk of sputtering damages to ITO layers.展开更多
Highly conductive transparent Al-doped zinc oxide (AZO) films with highly (002)-preferred orientation were successfully deposited on glass substrates at room temperature by RF magnetron sputtering. Optimization of...Highly conductive transparent Al-doped zinc oxide (AZO) films with highly (002)-preferred orientation were successfully deposited on glass substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on sputtering RF power and Ar pressure in the vacuum chamber. AZO films of 180nm with an electrical resistivity as low as 2.68 × 10^-3 Ω· cm and an average optical transmission of 90% in the visible range were obtained at RF power of 250W and Ar pressure of 1.2Pa. The effect of chemisorption of oxygen on the grain boundary would capture electrons from conduction band and lead the formation of potential barriers among the crystallites,which will influence the electric property of the AZO thin films. The films have satisfactory properties of low resistance and high transmittance for application as transparent conductive electrodes in light emitting diodes (LEDs) and solar cells.展开更多
In particular, the dye-sensitised solar cells(DSSCs) have a high potential in the rational energy conversion efficiency to secure our sustainable energy source.In the present study, advanced radio frequency(RF) magnet...In particular, the dye-sensitised solar cells(DSSCs) have a high potential in the rational energy conversion efficiency to secure our sustainable energy source.In the present study, advanced radio frequency(RF) magnetron sputtering technique was applied to incorporate titanium dioxide(TiO) dopants into reduced graphene oxide(rGO) nanosheet for improving the power conversion efficiency(PCE) of DSSCs device. An optimum TiOcontent incorporated onto rGO nanosheet plays an important role in improving the PCE of DSSCs by minimising the recombination losses of photo-induced charge carriers.Based on the results obtained, 40-s sputtering duration for incorporating TiOdopants onto rGO nanosheet exhibits a maximum PCE of 8.78% than that of pure rGO film(0.68%). In fact, the presence of optimum content of TiOdopants within rGO nanosheet could act as mediators for efficient separation photo-induced charge carriers. However, the excessive of sputtering duration(e.g. 60 s) of TiOdopants onto rGO nanosheet results higher charge recombination and lowers the PCE of DSSCs(5.39%).展开更多
Transparent oxide semiconductor, a-IGZO, thin films were prepared by high-vacuum RF magnetron sputtering at different working pressures. The effect of working pressure on crystal structure, surface morphology, and ele...Transparent oxide semiconductor, a-IGZO, thin films were prepared by high-vacuum RF magnetron sputtering at different working pressures. The effect of working pressure on crystal structure, surface morphology, and electrical and optical properties of the films was studied. The highest ball mobility of 17.45 cmZ-V-l.s- 1 is obtained at 0.3 Pa with annealing at 200 ℃, while the highest carrier concentration of 2.32×10^20 cm^-3 and the lowest resistivity of 0.001568 Ω.cm are obtained at 0.45 Pa with annealing. The highest transmittance of 90.9 % is obtained at 0.9 Pa with annealing treatment. A "blue shift" of UV absorption edge is observed with the increase of working press ure.展开更多
ZnO films and ZnO:Cu diluted magnetic semiconductor films were prepared by radio frequency mag-netron sputtering on Si (111) substrates, with targets of ZnO and Zn0.99Cu0.01O, respectively. The plasma emission spec...ZnO films and ZnO:Cu diluted magnetic semiconductor films were prepared by radio frequency mag-netron sputtering on Si (111) substrates, with targets of ZnO and Zn0.99Cu0.01O, respectively. The plasma emission spectra were analyzed by using a grating monochromator during sputtering. The X-ray photoelectron spectroscopy measurements indicate the existence of Zni defect in the films, and the valence state of Cu is 1+. The X-ray diffraction measurements indicate that the thin films have a hexagonal wurtzite structure and have a preferred orientation along the c-axis. The vibrating sample magnetometer measurements indicate that the sample is ferromagnetic at room temperature, and the origin of the magnetic behavior of the samples is discussed.展开更多
The excellent physical and chemical properties of cubic boron nitride(c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications i...The excellent physical and chemical properties of cubic boron nitride(c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications in many cases. Thus, it is indispensable to develop an economic, simple and environment-friend way to synthesize high-quality thick, stable c-BN films. High-cubic-content BN films are prepared on silicon(100) substrates by radio frequency(RF) magnetron sputtering from an h-BN target at low substrate temperature. Adhesions of the c-BN films are greatly improved by adding hydrogen to the argon/nitrogen gas mixture, allowing the deposition of a film up to 5-μm thick. The compositions and the microstructure morphologies of the c-BN films grown at different substrate temperatures are systematically investigated with respect to the ratio of Hgas content to total working gas. In addition, a primary mechanism for the deposition of thick c-BN film is proposed.展开更多
This paper reported that the Mn-doped TiO2 films were prepared by radio frequency (RF) magnetron cosputtering. X-ray diffraction measurements indicate that the samples are easy to form the futile structure, and the ...This paper reported that the Mn-doped TiO2 films were prepared by radio frequency (RF) magnetron cosputtering. X-ray diffraction measurements indicate that the samples are easy to form the futile structure, and the sizes of the crystal grains grow big and big as the Mn concentration increases. X-ray photoemlssion spectroscopy measurements and high resolution transmission electron microscope photographs confirm that the manganese ions have been effectively doped into the TiO2 crystal when the Mn concentration is lower than 21%. The magnetic property measurements show that the Ti1-xMnxO2 (x = 0.21) films are ferromagnetic at room temperature, and the saturation magnetization, coercivity, and saturation field are 16.0 emu/cm^3, 167.5 × 80 A/m and 3740 × 80 A/m at room temperature, respectively. The room-temperature ferromagnetism of the films can be attributed to the new futile Ti1-xMnxO2 structure formed by the substitution of Mn^4+ for Ti^4+ into the TiO2 crystal .lattice, and could be explained by O vacancy (Vo)-enhanced ferromagnetism model.展开更多
CrN films have been synthesized on Si(100) wafer by inductively coupled plasma (ICP)-enhanced radio frequency (RF) magnetron sputtering. The effects of ICP power on microstructure, crystal orientation, nanohardn...CrN films have been synthesized on Si(100) wafer by inductively coupled plasma (ICP)-enhanced radio frequency (RF) magnetron sputtering. The effects of ICP power on microstructure, crystal orientation, nanohardness and stress of the CrN films have been investigated. With the increase of ICP power, the current density at substrate increases and the films exhibit denser structure, while the DC self-bias of target and the deposition rate of films decrease. The films change from crystal structure to amorphous structure with the increase of ICP power. The measured nanohardness and the compressive stress of films reach the topmost at ICP power of 150 W and 200 W, respectively. The mechanical properties of films show strong dependence on the crystalline structure and the density influenced by the ICP power.展开更多
Zn1-xCuxO thin films were synthesized by the radio frequency (RF) magnetron sputtering technique using a ZnO target containing different pieces of small Cu-chips. X-ray diffraction (XRD) and scanning electron micr...Zn1-xCuxO thin films were synthesized by the radio frequency (RF) magnetron sputtering technique using a ZnO target containing different pieces of small Cu-chips. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to analyze the crystalline and microstructure of the film, and X-ray photoelectron spectroscopy (XPS) was used to establish the bonding characteristics and oxidation states of copper inside the ZnO host. Room temperature (RT) ferromagnetism was observed in the Znl-xCuxO films by a Quantum Design superconducting quantum interference device (SQUID) and the saturation magnetic moment of the films was found to decrease with the increase in Cu content.展开更多
Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron s...Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron sputtering. The films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and ultraviolet visible spectroscopy, and the effect of annealing atmosphere on the properties of films was studied. The Ga_(2)O_(3) films changed from amorphous to β-Ga_(2)O_(3) after annealing at 900 °C. The films were composed of micro crystalline particles with a diameter of about 5–20 nm.The β-Ga_(2)O_(3) had high transmittance for wavelengths above 300 nm, and obvious absorption for solar-blind signals at 200–280 nm.The metal semiconductor metal type solar-blind detectors were prepared. The detector based on Sn-doped β-Ga_(2)O_(3) thin film annealed in N_2 has the best response performance to 254 nm light. The photo-current is 10 μA at 20 V, the dark-current is 5.76 pA,the photo dark current ratio is 1.7 × 10~6, the response rate is 12.47 A/W, the external quantum efficiency is 6.09 × 10~3%, the specific detection rate is 2.61 × 10~(12) Jones, the response time and recovery time are 378 and 90 ms, respectively.展开更多
High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic targe...High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic target.The effect of substrate temperature on the structural,electrical and optical performances of ZTO films has been studied.X-ray diffraction (XRD) results show that ZTO films possess tetragonal rutile structure with the preferred orientation of (101).The surface morphology and roughness of the films was investigated by the atomic force microscope (AFM).The electrical characteristic (including carrier concentration,Hall mobility and resistivity) and optical transmittance were studied by the Hall tester and UV- VIS,respectively.The highest carrier concentration of -1.144×1020 cm-3 and the Hall mobility of 7.018 cm2(V ·sec)-1 for the film with an average transmittance of about 80.0% in the visible region and the lowest resistivity of 1.116×10-2 Ω·cm were obtained when the ZTO films deposited at 250 oC.展开更多
The need for reducing the wear in mechanical parts used in the industry makes self-lubricant films one of the sustainable solutions to achieve long-term protection under different environmental conditions.The purpose ...The need for reducing the wear in mechanical parts used in the industry makes self-lubricant films one of the sustainable solutions to achieve long-term protection under different environmental conditions.The purpose of this work is to study the influence of C additions on the tribological behavior of a magnetron-sputtered TiN film in air,water,and seawater.The results show that the addition of C into the TiN binary film induced a new amorphous phase,and the films exhibited a dual phase of fcc(face-centered cubic)-TiN and amorphous carbon.The antifriction and wear-resistance properties were enhanced in air and water by adding 19.1at%C.However,a further increase in the C concentration improved anti-frictional properties but also led to higher wear rates.Although the amorphous phase induced microbatteries and accelerated the corrosion of TiN phases in seawater,the negative abrasion state was detected for all Ti-C-N films due to the adhesion of the tribocorrosion debris on the wear track.展开更多
The electroluminescence of ZnS doped with terbium fluoride thin films prepared b y ra dio frequency magnetron sputtering method was reported. The characteristics of t h e ZnS∶TbF 3 thin film electroluminescence devi...The electroluminescence of ZnS doped with terbium fluoride thin films prepared b y ra dio frequency magnetron sputtering method was reported. The characteristics of t h e ZnS∶TbF 3 thin film electroluminescence devices, such as film characteristi cs of the ZnS∶Tb active layer, substrate temperatures during magnetron sputteri ng and Tb concentration of the active layer, were systematically investigated. The results show that annealing can evidently improve the luminescence performance of the luminescence device.展开更多
基金supported by open research fund from Guangxi Key Laboratory of New Energy and Building Energy Saving, China
文摘Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.
文摘To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFB0405700)the National Natural Science Foundation of China(Grant Nos.11474272 and 61774144)+1 种基金Beijing Natural Science Foundation Key Program,China(Grant No.Z190007)the Chinese Academy of Sciences(Grant Nos.QYZDY-SSW-JSC020,XDB44000000,and XDB28000000)。
文摘We demonstrate that radio frequency(RF)magnetron sputtering technique can modify the perpendicular magnetic anisotropy(PMA)of Pt/Co/normal metal(NM)thin films.Influence of ion irradiation during RF magnetron sputtering should not be neglected and it can weaken PMA of the deposited magnetic films.The magnitude of this influence can be controlled by tuning RF magnetron sputtering deposition conditions and the upper NM layer thickness.According to the stopping and range of ions in matter(SRIM)simulation results,defects such as displacement atoms and vacancies in the deposited film will increase after the RF magnetron sputtering,which can account for the weakness of PMA.The amplitude changes of the Hall resistance and the threshold current intensity of spin orbit torque(SOT)induced magnetization switching also can be modified.Our study could be useful for controlling magnetic properties of PMA films and designing new type of SOT-based spintronic devices.
文摘The influence of amorphous TiO_2 seeding layers on the phase composition of lead magnesium niobate-lead titanate(0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3,PMN-PT) films deposited on Pt/Ti/SiO2/Si substrate by RF magnetron sputtering was examined.The relation between seeding layer thickness and phase composition at different post annealing temperature was observed by XRD.The thickness of amorphous TiO2 seeding layer and post annealing temperature had remarkable effects on PMN-PT film phase composition.When amorphous seeding layer becomes thick,a new phase of Nb2O5 exists in the films.Only when the seeding layer thickness is suitable,the film with pure perovskite phase can be attained.
文摘Sm and Gd co-doped Ceria (SGDC:Sm_(0.1)Gd_(0.1)Ce_(0.8)O_(1.90)) films as the electrolytes were investigated for the IT-SOFCs (intermediate-temperature solid oxide fuel cells).SGDC sensing films were successfully prepared on the Al_2O_3 substrates by RF-magnetron sputtering.The relationship between sputtering parameters and film microstructure was discussed, and the optimum parameters were gained.The crystal structure analysis and surface morphologic observation of the SGDC films were carried out through X-ray diffraction (XRD) and scanning electron microscopy (SEM).The oxygen ion conductivity of the SGDC film was evaluated by AC impedance spectroscopy at the different temperatures.The XRD analysis shows that the SGDC films grow preferentially along the (111) compact plane.The crystallinity of the SGDC films is enhanced with the increase of the RF sputtering power from 150 W to 250 W.The oxygen ion conductivity of the SGDC was measured at the temperature from 600℃to 800℃in air by AC impedance spectroscopy.The result shows that a high oxygen ion conductivity of 2.44×10^(-2) S.cm^(-1) was achieved at 800℃.
基金Supported by the National Natural Science Foundation of China under Grant No 11304160the Special Fund for Public Interest of China under Grant No 201510068,and the NUPTFC under Grant No NY215111
文摘Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are investigated.The structures of the xBI-(1-x)PT films are characterized by x-ray diffraction and scanning electron microscopy.The results indicate that the thin films are grown with mainly(001) orientation. The chemical compositions of the films are analyzed by scanning electron probe and the results indicate that the loss phenomena of Pb and Bi elements depend on the pressure and temperature during the sputtering process.The sputtering parameters including target composition, substrate temperature, and gas pressure are adjusted to obtain optimum sputtering conditions. To decrease leakage currents,2 mol% La2 O3 is doped in the targets. The P-E hysteresis loops show that the optimized xBI-(1-x)PT(x = 0.24) film has high ferroelectricities with remnant polarization2 Pr = 80μC/cm2 and coercive electric field 2 EC = 300 kV/cm. The Curie temperature is about 640℃. The results show that the films have optimum performance and will have wide applications.
基金The authors acknowledge the financial support of the Brazilian agencies FAPESP(Process N°2008/53311-5 and 2011/21345-0)and CNPq.
文摘Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm-3 to 2.6 × 1019 cm-3. The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.
基金financial supports by National Natural Science Foundation of China(Nos.11975163 and 12175160)Nantong Basic Science Research-General Program(No.JC22022034)Natural Science Research Fund of Jiangsu College of Engineering and Technology(No.GYKY/2023/2)。
文摘This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,attributed to heightened plasma potential and initial emergent energy.Simultaneously,the positive ion flux escalates owing to amplified sputtering rates and electron density.Conversely,negative ions exhibit broad ion energy distribution functions(IEDFs)characterized by multiple peaks.These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential,alongside ion transport time.This elucidation finds validation in a one-dimensional model encompassing the initial ion energy.At higher RF power,negative ions surpassing 100 e V escalate in both flux and energy,posing a potential risk of sputtering damages to ITO layers.
文摘Highly conductive transparent Al-doped zinc oxide (AZO) films with highly (002)-preferred orientation were successfully deposited on glass substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on sputtering RF power and Ar pressure in the vacuum chamber. AZO films of 180nm with an electrical resistivity as low as 2.68 × 10^-3 Ω· cm and an average optical transmission of 90% in the visible range were obtained at RF power of 250W and Ar pressure of 1.2Pa. The effect of chemisorption of oxygen on the grain boundary would capture electrons from conduction band and lead the formation of potential barriers among the crystallites,which will influence the electric property of the AZO thin films. The films have satisfactory properties of low resistance and high transmittance for application as transparent conductive electrodes in light emitting diodes (LEDs) and solar cells.
基金financially supported by the University Malaya Prototype Grant (No. RU005G-2016)the Transdisciplinary Research Grant Scheme, TRGS (No. TR002A-2014B)+1 种基金the University Malaya Research Grant (No. RP045B-17AET)the Global Collaborative Programme-SATU Joint Research Scheme from the University of Malaya (No. ST007-2017)
文摘In particular, the dye-sensitised solar cells(DSSCs) have a high potential in the rational energy conversion efficiency to secure our sustainable energy source.In the present study, advanced radio frequency(RF) magnetron sputtering technique was applied to incorporate titanium dioxide(TiO) dopants into reduced graphene oxide(rGO) nanosheet for improving the power conversion efficiency(PCE) of DSSCs device. An optimum TiOcontent incorporated onto rGO nanosheet plays an important role in improving the PCE of DSSCs by minimising the recombination losses of photo-induced charge carriers.Based on the results obtained, 40-s sputtering duration for incorporating TiOdopants onto rGO nanosheet exhibits a maximum PCE of 8.78% than that of pure rGO film(0.68%). In fact, the presence of optimum content of TiOdopants within rGO nanosheet could act as mediators for efficient separation photo-induced charge carriers. However, the excessive of sputtering duration(e.g. 60 s) of TiOdopants onto rGO nanosheet results higher charge recombination and lowers the PCE of DSSCs(5.39%).
基金financially supported by the National Natural Science Foundation of China (No. 51571010)
文摘Transparent oxide semiconductor, a-IGZO, thin films were prepared by high-vacuum RF magnetron sputtering at different working pressures. The effect of working pressure on crystal structure, surface morphology, and electrical and optical properties of the films was studied. The highest ball mobility of 17.45 cmZ-V-l.s- 1 is obtained at 0.3 Pa with annealing at 200 ℃, while the highest carrier concentration of 2.32×10^20 cm^-3 and the lowest resistivity of 0.001568 Ω.cm are obtained at 0.45 Pa with annealing. The highest transmittance of 90.9 % is obtained at 0.9 Pa with annealing treatment. A "blue shift" of UV absorption edge is observed with the increase of working press ure.
文摘ZnO films and ZnO:Cu diluted magnetic semiconductor films were prepared by radio frequency mag-netron sputtering on Si (111) substrates, with targets of ZnO and Zn0.99Cu0.01O, respectively. The plasma emission spectra were analyzed by using a grating monochromator during sputtering. The X-ray photoelectron spectroscopy measurements indicate the existence of Zni defect in the films, and the valence state of Cu is 1+. The X-ray diffraction measurements indicate that the thin films have a hexagonal wurtzite structure and have a preferred orientation along the c-axis. The vibrating sample magnetometer measurements indicate that the sample is ferromagnetic at room temperature, and the origin of the magnetic behavior of the samples is discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51572105,61504046,and 51272224)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China+1 种基金the Development and Reform Commission of Jilin Province,China(Grant No.2015Y050)the Scientific Research Foundation for the Returned Overseas of Jilin Province,China
文摘The excellent physical and chemical properties of cubic boron nitride(c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications in many cases. Thus, it is indispensable to develop an economic, simple and environment-friend way to synthesize high-quality thick, stable c-BN films. High-cubic-content BN films are prepared on silicon(100) substrates by radio frequency(RF) magnetron sputtering from an h-BN target at low substrate temperature. Adhesions of the c-BN films are greatly improved by adding hydrogen to the argon/nitrogen gas mixture, allowing the deposition of a film up to 5-μm thick. The compositions and the microstructure morphologies of the c-BN films grown at different substrate temperatures are systematically investigated with respect to the ratio of Hgas content to total working gas. In addition, a primary mechanism for the deposition of thick c-BN film is proposed.
基金Project supported by the Aeronautical Science foundation of China (Grant No 2003ZG51069)the National Defence BaseResearch of China
文摘This paper reported that the Mn-doped TiO2 films were prepared by radio frequency (RF) magnetron cosputtering. X-ray diffraction measurements indicate that the samples are easy to form the futile structure, and the sizes of the crystal grains grow big and big as the Mn concentration increases. X-ray photoemlssion spectroscopy measurements and high resolution transmission electron microscope photographs confirm that the manganese ions have been effectively doped into the TiO2 crystal when the Mn concentration is lower than 21%. The magnetic property measurements show that the Ti1-xMnxO2 (x = 0.21) films are ferromagnetic at room temperature, and the saturation magnetization, coercivity, and saturation field are 16.0 emu/cm^3, 167.5 × 80 A/m and 3740 × 80 A/m at room temperature, respectively. The room-temperature ferromagnetism of the films can be attributed to the new futile Ti1-xMnxO2 structure formed by the substitution of Mn^4+ for Ti^4+ into the TiO2 crystal .lattice, and could be explained by O vacancy (Vo)-enhanced ferromagnetism model.
文摘CrN films have been synthesized on Si(100) wafer by inductively coupled plasma (ICP)-enhanced radio frequency (RF) magnetron sputtering. The effects of ICP power on microstructure, crystal orientation, nanohardness and stress of the CrN films have been investigated. With the increase of ICP power, the current density at substrate increases and the films exhibit denser structure, while the DC self-bias of target and the deposition rate of films decrease. The films change from crystal structure to amorphous structure with the increase of ICP power. The measured nanohardness and the compressive stress of films reach the topmost at ICP power of 150 W and 200 W, respectively. The mechanical properties of films show strong dependence on the crystalline structure and the density influenced by the ICP power.
基金National Natural Science Foundation of China (Nos.10275047,10575073)the Natural Science Foundation of Jiangsu Province of China (03KJB140116)
文摘Zn1-xCuxO thin films were synthesized by the radio frequency (RF) magnetron sputtering technique using a ZnO target containing different pieces of small Cu-chips. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to analyze the crystalline and microstructure of the film, and X-ray photoelectron spectroscopy (XPS) was used to establish the bonding characteristics and oxidation states of copper inside the ZnO host. Room temperature (RT) ferromagnetism was observed in the Znl-xCuxO films by a Quantum Design superconducting quantum interference device (SQUID) and the saturation magnetic moment of the films was found to decrease with the increase in Cu content.
基金supported by the National Natural Science Foundation of China (Grant No. 62204203)the Shaanxi Natural Science Basic Research Program (Grant No. 2022JQ-701)。
文摘Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron sputtering. The films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and ultraviolet visible spectroscopy, and the effect of annealing atmosphere on the properties of films was studied. The Ga_(2)O_(3) films changed from amorphous to β-Ga_(2)O_(3) after annealing at 900 °C. The films were composed of micro crystalline particles with a diameter of about 5–20 nm.The β-Ga_(2)O_(3) had high transmittance for wavelengths above 300 nm, and obvious absorption for solar-blind signals at 200–280 nm.The metal semiconductor metal type solar-blind detectors were prepared. The detector based on Sn-doped β-Ga_(2)O_(3) thin film annealed in N_2 has the best response performance to 254 nm light. The photo-current is 10 μA at 20 V, the dark-current is 5.76 pA,the photo dark current ratio is 1.7 × 10~6, the response rate is 12.47 A/W, the external quantum efficiency is 6.09 × 10~3%, the specific detection rate is 2.61 × 10~(12) Jones, the response time and recovery time are 378 and 90 ms, respectively.
基金Funded by the Program for Changjiang Scholars and Innovative Research Team in University, Ministry of Education, China (No.IRT0547)
文摘High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic target.The effect of substrate temperature on the structural,electrical and optical performances of ZTO films has been studied.X-ray diffraction (XRD) results show that ZTO films possess tetragonal rutile structure with the preferred orientation of (101).The surface morphology and roughness of the films was investigated by the atomic force microscope (AFM).The electrical characteristic (including carrier concentration,Hall mobility and resistivity) and optical transmittance were studied by the Hall tester and UV- VIS,respectively.The highest carrier concentration of -1.144×1020 cm-3 and the Hall mobility of 7.018 cm2(V ·sec)-1 for the film with an average transmittance of about 80.0% in the visible region and the lowest resistivity of 1.116×10-2 Ω·cm were obtained when the ZTO films deposited at 250 oC.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171071, 52172090, 52071159, and 51801081)Portugal National Funds through FCT project (No. 2021.04115)+4 种基金FEDER National funds FCT under the project CEMMPRE–UIDB/ 00285/2020Outstanding University Young Teachers of “Qing Lan Project” of Jiangsu ProvinceExcellent Talents of “Shenlan Project” of Jiangsu University of Science and Technologyand China Merchants Marine Scientific Research and Innovation FundFilipe Fernandes acknowledges the funding received in the aim of the projects: MCTool21– ref. “POCI-01-0247-FEDER-045940”, CEMMPRE–ref. “UIDB/00285/2020”, and SMARTLUB–ref. “POCI-010145-FEDER-031807”
文摘The need for reducing the wear in mechanical parts used in the industry makes self-lubricant films one of the sustainable solutions to achieve long-term protection under different environmental conditions.The purpose of this work is to study the influence of C additions on the tribological behavior of a magnetron-sputtered TiN film in air,water,and seawater.The results show that the addition of C into the TiN binary film induced a new amorphous phase,and the films exhibited a dual phase of fcc(face-centered cubic)-TiN and amorphous carbon.The antifriction and wear-resistance properties were enhanced in air and water by adding 19.1at%C.However,a further increase in the C concentration improved anti-frictional properties but also led to higher wear rates.Although the amorphous phase induced microbatteries and accelerated the corrosion of TiN phases in seawater,the negative abrasion state was detected for all Ti-C-N films due to the adhesion of the tribocorrosion debris on the wear track.
文摘The electroluminescence of ZnS doped with terbium fluoride thin films prepared b y ra dio frequency magnetron sputtering method was reported. The characteristics of t h e ZnS∶TbF 3 thin film electroluminescence devices, such as film characteristi cs of the ZnS∶Tb active layer, substrate temperatures during magnetron sputteri ng and Tb concentration of the active layer, were systematically investigated. The results show that annealing can evidently improve the luminescence performance of the luminescence device.