期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance optimization of tri-gate junctionless FinFET using channel stack engineering for digital and analog/RF design
1
作者 Devenderpal Singh Shalini Chaudhary +1 位作者 Basudha Dewan Menka Yadav 《Journal of Semiconductors》 EI CAS CSCD 2023年第11期89-100,共12页
This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel.For the analysis,three different channel structures are used:(a)tri-layer stack chan... This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel.For the analysis,three different channel structures are used:(a)tri-layer stack channel(TLSC)(Si-SiGe-Si),(b)double layer stack channel(DLSC)(SiGe-Si),(c)single layer channel(SLC)(S_(i)).The I−V characteristics,subthreshold swing(SS),drain-induced barrier lowering(DIBL),threshold voltage(V_(t)),drain current(ION),OFF current(IOFF),and ON-OFF current ratio(ION/IOFF)are observed for the structures at a 20 nm gate length.It is seen that TLSC provides 21.3%and 14.3%more ON current than DLSC and SLC,respectively.The paper also explores the analog and RF factors such as input transconductance(g_(m)),output transconductance(gds),gain(gm/gds),transconductance generation factor(TGF),cut-off frequency(f_(T)),maximum oscillation frequency(f_(max)),gain frequency product(GFP)and linearity performance parameters such as second and third-order harmonics(g_(m2),g_(m3)),voltage intercept points(VIP_(2),VIP_(3))and 1-dB compression points for the three structures.The results show that the TLSC has a high analog performance due to more gm and provides 16.3%,48.4%more gain than SLC and DLSC,respectively and it also provides better linearity.All the results are obtained using the VisualTCAD tool. 展开更多
关键词 short channel effects(SCEs) junctionless FinFET analog and rf parameters SIGE
下载PDF
Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors
2
作者 Doo-Hee CHANG Seung Ho JEONG +4 位作者 Min PARK Tae-Seong KIM Bong-Ki JUNG Kwang Won LEE Sang Ryul IN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第12期1220-1224,共5页
A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a dr... A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region. 展开更多
关键词 neutral beam injector rf ion source plasma ignition power loading plasma parameters
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部